

1

 February 5, 2012

slippery chicken
a specialised algorithmic composition program

Abstract
This article introduces a new open-source algorithmic composition system,

slippery chicken, which enables a top-down approach to musical composition.

Specific techniques in slippery chicken are introduced along with examples of their

usage in the author’s compositions. The software was originally tailor-made to

encapsulate the author's personal composition techniques, however many

general-purpose algorithmic composition tools have been programmed that

should be useful to a range of composers. The main goal of the project is to

facilitate a melding of electronic and instrumental sound worlds, not just at the

sonic but also at the structural level. Techniques for the innovative combination

of rhythm and pitch data—arguably one of the most difficult aspects of making

convincing musical algorithms—are also offered. The software was developed

by the author in the Common Lisp Object System and released as open-source

software in May 2012; see http://www.michael-edwards.org/sc.

Keywords

o Algorithmic Composition
o Automatic Composition
o Computer-aided Composition
o Sound file generation
o MIDI file generation
o Score generation
o Common Lisp
o Common Lisp Object System (CLOS)
o Common Lisp Music

2

 February 5, 2012

o Common Music
o Common Music Notation
o LilyPond
o Algorithms:

 Fibonacci Transitions
 Lindenmayer Systems
 Rhythm Chains
 Set Manipulation
 Permutations
 Popcorn Dynamics
 Intra-Phrasal Loop Chopping

Overview
“Formerly, when one worked alone, at a given point a

decision was made, and one went in one direction rather than

another; whereas, in the case of working with another person

and with computer facilities, the need to work as though

decisions were scarce—as though you had to limit yourself to

one idea—is no longer pressing. It’s a change from the

influences of scarcity or economy to the influences of abundance

and—I’d be willing to say—waste.” (John Cage, quoted in

Austin et al. 1992)

 The potential for software algorithms to enrich our musical culture has been

established, in the 50+ years since such techniques were first introduced, by

personalities as diverse as Hiller, Xenakis, Cage, and Eno. Algorithmic

composition usually involves the use of a finite set of step-by-step procedures,

most often encapsulated in software routines, to create music. The power of such

systems is, arguably, still not fully understood or deeply investigated by the

3

 February 5, 2012

majority of musicians and composers, whether highly trained or not. Indeed, in

the author’s experience, a lot of the prejudice algorithmic composition pioneer

Hiller suffered under (Bewley 2004) is still with us today. But there are clearly

many riches to be mined in algorithmic composition, as the expression of

compositional ideas in software often leads to unexpected and surprisingly new,

exciting results, and these can seldom be achieved via traditional means.1

Algorithmic composition techniques can thus play a vital and energising role in

the development of modern music across all genres and styles.

This article won't debate the history of algorithmic composition as this is

done elsewhere (e.g. Edwards 2011a; Essl 2007; Nierhaus 2009; Roads 1996, 856-

909). Instead, it will introduce and illustrate techniques implemented in slippery

chicken, with examples of their usage in the author’s compositions.

slippery chicken is an open-source, specialised algorithmic composition

program written in the general programming language Common Lisp and its

object-oriented extension, the Common Lisp Object System (CLOS). Work on

slippery chicken has been ongoing since 2000. By specialised as opposed to

generalised, it is meant that the software was originally tailor-made to

encapsulate the author’s personal composition techniques and to suit his own

compositional needs and goals. As the software has developed however, many

1 Though the composer Clarence Barlow would perhaps disagree with this, as

he states that in his algorithmic works “he would obtain the same results

without the help of a computer” (Supper 2001, 49).

4

 February 5, 2012

general-purpose algorithmic composition tools have been programmed that

should be useful to a range of composers. The system does not produce music of

any particular aesthetic strain—for example, although not programmed to

generate tonal music the system is quite capable of producing it. But if it is to be

used to generate complete pieces it does prescribe a certain specialised approach;

this will be described below.

slippery chicken has no graphical user interface and there are no plans to make

one. Whilst it is clear that this will be off-putting to some, there are many

benefits to interacting with such a system through the programming language it

was created in, not least of which is the infinite-extensibility that such an

approach infers. As the computer science adage goes, “When using WYSIWYG

[What You See Is What You Get] systems, What You See Is All You'll Ever Get.”2

The algorithmic system in slippery chicken is mainly deterministic but also

includes stochastic elements if desired.3 It has been used to create musical

structure for pieces since its inception and for several years now has been at the

stage where it can generate, in one pass, complete musical scores for traditional

2 Despite much internet attribution, Donald E. Knuth has confirmed to the

author that this quotation did not stem from him.
3 Including, but not limited to, permutations in both a deterministic and

random order. slippery chicken offers the use of fixed-seed randomness so that

repeatable results may be generated. For a discussion of the usefulness of

such see (Edwards 2011a, 64).

5

 February 5, 2012

instruments. It can also, with the same data used to generate those scores, write

sound files using samples, or MIDI file realisations of the instrumental score.

The project's main aim is to facilitate a melding of electronic and instrumental

sound worlds,4 not just at the sonic but also at the structural level. Hence certain

processes common in one medium (for instance sound file slicing and looping)

are transferred to another (the slicing up of notated musical phrases and the

instigation of sub-phrase loops, for example). Techniques for the innovative

combination of rhythmic and pitch data—arguably one of the most difficult

aspects of making convincing musical algorithms—are also offered.

The system includes but is not mainly concerned with the automation of

some of the more laborious aspects of instrumental composition—transposition,

harmonic and rhythmic manipulation for example—and thus facilitates and

encourages experimentation with musical data before committing to final forms.

By generating music data algorithmically, independent of output format,

structures become available for use in the preparation of digital and notated

music—in the digital case, particularly for the generation of parameters for the

digital synthesis and signal processing language Common Lisp Music (CLM:

Schottstaedt 2011a). The programme in nascent form was first used for the

generation of the tape part of a piece by the author for solo violin, ensemble, and

stereo tape: slippery when wet (Edwards 2000). Its effectiveness in sonically and

4 Though it can be used purely for instrumental or computer music also.

6

 February 5, 2012

structurally integrating the instrumental and digital resources in that piece

provided the impetus to pursue the idea further.

What slippery chicken is focused upon then is harnessing the rich data

structure management of Common Lisp and CLOS to achieve a top-down

approach to musical composition: defining, ordering, combining, and

manipulating rhythmic, pitch, sound file, instrumental, and dynamic

information, etc., into complete pieces of music or structures ready for further

processing within or outwith the system. The output of the program is in the

form of:

• MIDI files, generated with the help of Common Music's MIDI routines

(CM 2.6.0: Taube 2005), and containing all the tempo and meter

information that facilitates reading into music notation software such as

Sibelius or Finale

• music scores:

o postscript files generated by interfacing with Common Music

Notation (CMN: Schottstaedt 2011b), and thus allowing the

algorithmic use of arbitrary symbols, note heads, etc., for the

encapsulation of extended instrumental techniques that are difficult

or impossible to encode in MIDI

o LilyPond input text files (LilyPond 2011), with similar advantages

to CMN, but more scope for post-generation intervention

• sound files, using samples driven by a custom, multi-channel CLM

instrument.

7

 February 5, 2012

The approach to algorithmic composition here is sequence or phrase-based

(though this should not be confused with MIDI sequencing). In its most basic

form, we define a certain number—a palette, in slippery chicken terms—of

rhythmic phrases and pitch sets, then map these onto instruments through

rhythm and set map objects which, when combined, select notes to form a

complete piece. For an example of the type of rhythm data used initially, see

Figure 1 for the first eight rhythm sequences of the first piece composed by the

author using this software, slippery when wet (Edwards 2000).

Figure 1: Part of the rhythm sequence palette of the author’s slippery when wet.

8

 February 5, 2012

These rhythm sequences were initially sketched by hand before being entered

into Lisp-readable format.5 (Nowadays they would more likely be generated by

algorithmic techniques such as rhythm chains, as discussed below.) Of paramount

importance at the time of sketching and selection was that each sequence should

be both contrapuntally (vertically) and melodically (horizontally, one after the

other) combinable with any other sequence, and that it should be “playable” on

any of the instruments in the ensemble. Once a palette of 21 sequences was

decided upon for slippery when wet, they were mapped across the ensemble for

the twelve sections of the whole piece. This is illustrated in Figure 2. By

planning compositional structure in this top-down manner, we immediately see

the advantage of being able to design and control large-scale formal

development. For example, the piece has two tendencies visible here: First, a

movement from the whole ensemble playing together (tutti), but gradually

reducing to section 10, where the solo violin is playing alone; and second, from

each instrument playing different rhythm sequences, to more and more playing in

rhythmic unison (these are indicated by yellow highlighting).

5 Rhythm data can now include all articulations, ties, tuplets, etc. necessary

for notation.

9

 February 5, 2012

Figure 2: Rhythm sequence map for the author’s slippery when wet. Larger bold numbers

indicate section number; smaller numbers indicate the rhythm sequence number to be used by

each particular instrument.

One of the more challenging aspects of algorithmic composition—at least in

pieces where there should be a semblance of phrases formed of horizontally

connected notes—is the satisfactory combination of rhythms with pitches.6 For

6 There are of course musical systems which decouple the organisation of

pitch and rhythm material: medieval isorhythmic motets, integral serialism,

10

 February 5, 2012

instance, if we were to place a rhythmic phrase without pitch information in

front of a trained composer, s/he could no doubt sing or play back a number of

pitch contours that would subjectively work with these rhythms. The corollary

of this is that not all pitch contours would work with the given rhythms, and that

the contours would be influenced by the given rhythms, even if several solutions

were available and the general shape of a line were more important than the

exact pitches chosen. The reverse is also true: if the composer were offered a

pitch contour without rhythms, then the selected rhythms would be influenced

by the shape of the line. The process of matching one to the other is complex and

idiosyncratic, dependent on culture, musical experience, taste, etc. Thus

formalisation of this process is difficult.

slippery chicken’s solution is to allow for the provision of an arbitrary number

of pitch sequences (perhaps even algorithmically) to each rhythm sequence. The

pitch sequences consist of a list of simple integers, one for each attacked rhythm

(i.e. not for tied notes), over a user-defined range but where, for example, 2

would indicate a higher pitch than 1. Though showing at least some similarities

to the integral serialists’ approach to music-parametric organisation, the

marrying of pitch to rhythm data in this manner—a relation of the qualities of a

group of rhythms and their implications for the associated pitch contour—is

and Cage’s music composed with the I Ching, for example. But the

interdependence of these two parameters continues to exist in a wide variety

of musical contexts.

11

 February 5, 2012

arguably preferable to the basic serial method of a separate relation of pitch and

rhythm to the series only, on a note-by-note basis.

When rhythm sequences have been mapped to ensemble players, and pitch sets

(harmonic material) to rhythm sequences, it is then a matter of slippery chicken

selecting pitches from the current pitch set and pitch sequence. The algorithm will

of course only choose notes that are within each instrument’s range. A hierarchy

to specify which instrument is given priority when the algorithm is assigning

notes to instruments can also be defined, as an algorithmic attempt will be made

to use as many notes of the set as possible, spreading them out amongst the

instruments in the ensemble.7

Figure 3 and Figure 4 show how this pitch selection algorithm can work for

two instruments, flute and bassoon, with the pitch sequence 9 9 9 (3) 9 9

(3) 5. Numbers in parentheses indicate that a chord may be selected from the

pitch set, if appropriate for the instrument. There is provision for adding chord

selection hook functions (a default is provided) so that custom chords can be

created for each instrument, or piece, as desired.

The pitch set in Figure 3 has intentionally few low notes so that we can see

how the range of the algorithmically generated bassoon line is comparatively

narrow in comparison with that of the flute. The number of pitches available for

7 Though there is a preference for selecting unused pitches from the set, if this

is not possible then previously used pitches will be added until the number of

notes available are as close as possible to the pitch sequence's ideal number.

12

 February 5, 2012

an instrument might be considerably more or less than would ideally be

demanded by the numbers in the pitch sequence, so the integer range of the pitch-

sequence is either shifted or scaled by the number of available notes. The actual

notes chosen are a function of a lookup routine, using the scaled/shifted and

rounded pitch sequence numbers as indices. It is clear then that pitch sequences

marry pitch contour to rhythm sequences but that they cannot be coerced into

always and in any context specifying exact pitches. This is not the aim, especially

as any pitch sequence can be applied to any pitch set and any instrument.

Figure 3: pitch set example used in Figure 4.

Figure 4: Example pitch selections for the pitch sequence 9 9 9 (3) 9 9 (3) 5.

13

 February 5, 2012

Simple in concept at least then, the basic procedure for using slippery

chicken—any part of which may be algorithmically or manually delivered—can

be summed up as defining:

1. the instruments’:

a. ranges

b. transpositions

c. chord selection functions (if applicable)

d. microtonal potential

e. unplayable notes (e.g. microtones)

2. the instrument changes for individual players (e.g. flute to piccolo)

3. the set palette (harmonic fields) that the piece will use

4. the rhythm sequence palette

5. the set map: sets onto sequences

6. the rhythm sequence map: sequences onto instruments

7. the tempo maps

8. the set limits: for the whole piece and/or instruments.

Three limitations or requirements of the system should be mentioned here:

1. No doubt it will not have escaped the careful reader’s notice that

one and only one pitch set is mapped onto each rhythm sequence. In the

aesthetic context of the author’s works made with slippery chicken to

date, this presents no problem. However, if we think of rhythm

sequences as phrases, which they can indeed be thought of as at least

conceptually relating to, then in the context of tonal and some other

14

 February 5, 2012

musics, one chord per phrase is certainly out of the ordinary, perhaps

even restrictive. Rhythm sequences may be of any arbitrary length

however, so if a faster harmonic rhythm is desired, shorter sequences

can be used—at the expense of then needing more rhythm sequences to

make up the piece, and with the challenge of creating horizontally

connected lines from smaller units, with the attendant difficulty of

making the pitch sequences work when combined.

2. All rhythm sequences to be combined contrapuntally must be of the

same length. As one pitch set is applied to exactly one rhythm sequence

there can be no overlapping of pitch sets. There is provision however

for shorter rhythm sequences to be combined to match (exactly) the

length of a contrapuntally combined longer rhythm sequence.

3. The system is non-real time. There is no provision for real-time,

infinite generation of material. There are two main reasons for this:

a. Several processes, especially the DSP routines performed in

CLM, are potentially so computationally intensive as to be

impossible in real-time to date.

b. As several non-DSP processes rely on breakpoint functions

for the generation of data, the finite length of the piece must be

known in advance in order to make the required calculations.

This problem could be obviated by generating chunks of

material in advance, using breakpoint curves of finite lengths

not necessarily relating to the complete duration of a piece. This

15

 February 5, 2012

would be an interesting extension to slippery chicken that may

form part of future development work.

General Features

Although slippery chicken can of course perform many labour-intensive tasks

(such as score writing, transposition, and, through its fundamental algorithms,

pitch selection and sequence compiling), its main attraction is not, as the general

computer myth would have it, as a labour saving system. For composers,

arguably the primary benefit of this project and of algorithmic composition in

general is that the encapsulation and expression of compositional structure in

software often involves a form of practical experimentation that can lead to

surprisingly new, rewarding, and exciting results. Randomness is not the issue

here: many deterministic and, upon initial examination, seemingly predictable

algorithms lead through the combination of a few steps to unimaginable music.

Through the ability to generate pieces of an arbitrary length an arbitrary

number of times, refining data as the musical results are evaluated and

improved, the advantage of auditioning pieces in various guises or flavours,

with different instrumentation, harmony, speeds of transition, etc., cannot be

overestimated: even small changes to parameter values can have a significant

and often unforeseeable impact on the musical output. The potential to expand

the composer’s vision and lead his or her ear to unimagined places in this

manner becomes very powerful.

Roger Alsop writes, “an algorithmic system relieves the composer of many

decisions” (Alsop 1999). This may be true if the user was not the designer of the

16

 February 5, 2012

system and makes only superficial use of it, but the opposite is more often the

case. An algorithmic system forces the composer to confront decisions and,

especially if the system is to be of the composer's own design, to formalise what

might only loosely or even unconsciously be a system. In using algorithmic

systems, composers are encouraged to stretch themselves and be explicit about

their musical data and their organization. The serendipities that may arise from

this process can spur the composer to break norms in a way that pure intuition

inculcated by experience is perhaps less likely to do.

slippery chicken straddles the two poles of compositional process formalisation

and what some would consider a relinquishing of compositional autonomy.

With one of its main (but not unique) features being a bridging solution—leading

composers with little algorithmic experience into the world of music computing,

and bringing computer generation techniques to the world of instrumental

music—slippery chicken offers a structured method as opposed to a composition

software library. Clearly, any algorithmic composition system demands a

certain, often idiosyncratic approach: it is a question of to what degree. Some

systems are more open than others, and are therefore more akin to a software

library: SuperCollider (McCartney 2011), Pure Data (Puckette 2011), Max/MSP

(Puckette and Zicarelli 2011), and systems made with the latter such as the Real

Time Composition Library (Essl 2010), for example. Others are more specialised:

FractMus (Diaz-Jerez 2000), David Cope’s Experiments in Musical Intelligence

(Cope 1996), and Bernard Bel’s Bol Processor (Bel 1998).

slippery chicken is more akin to the specialised group. This is clearly its

greatest advantage: complete pieces of music can be generated with relatively

17

 February 5, 2012

little input from the user (hence in this way at least it fits Alsop’s view). But,

individualistic as they most often are, many composers won't find the method to

their taste. These may still consider some of the slippery chicken classes,

algorithms, and methods attractive. Many of the techniques can be applied

without being coerced into the map/palette approach to generating complete

pieces, so the package could be employed more as a software tool library also.

Two of the author’s recent works do this: who says this, saying it’s me?, for tenor

saxophone and quadraphonic sound files (Edwards 2009); and don't flinch, for

acoustic-electric guitar and computer (Edwards 2011b). In both these cases,

musical events generated with slippery chicken algorithms were written to MIDI

files and further processed thanks to the incorporation in slippery chicken of

Common Music's MIDI subsystem (Taube 2005).

Because of its delivery format as an open-source, object-oriented Lisp

package, slippery chicken is infinitely extensible. It can be used in its simplest

form by entering the necessary musical data in lists and allowing the system to

generate a complete piece of music. Or it can generate pieces, sections, phrases,

etc., by making more sophisticated use of its internal generative classes and/or

user-programmed extensions and subclasses. The generated data structures can

also be altered through a host of included editing functions and methods. Here

is where the tension between idealism and pragmatism found at the very

beginnings of computer-based algorithmic composition and discussed in

(Edwards 2011a, 62-63) arises. To summarize briefly: Lejaren Hiller believed that

if the output of the algorithm is deemed deficient, then the programme should be

modified and the output regenerated; whereas Koenig and Xenakis took a more

18

 February 5, 2012

practical approach, treating the output of their algorithms to transcription,

modification, and elaboration. Despite its perhaps idealistic goal of generating

complete and coherent musical works, with its collection of internal data editing

functions, slippery chicken remains solidly pragmatic. In its pre-2006 form, before

the introduction of the pitch-selection algorithm, slippery chicken was arguably

more in the camp of computer-aided composition than that of algorithmic

composition, to use Monroe’s distinction (Monroe 1997). It is now more firmly in

the algorithmic composition camp, with the potential to act merely as a digital

composition assistant if so desired.

slippery chicken techniques and algorithms
With CLM

When writing sound files with a custom, 4-channel CLM instrument, slippery

chicken uses essentially the same data as used for generating MIDI and score files.

Notation details such as ties, dots, clefs, etc., have no bearing upon sound file

generation of course, and are thus ignored. In order to generate sound files, a

sound file palette slot in the slippery chicken object is used. This stores data

associated with groups of sound files; they will be cycled through during the

algorithmic processing. There can be any number of sound file groups, allowing

the musical data to be applied to several different categories of sound. This can

create interesting variations of recognizably similar musical material. Moreover,

the use of the same musical data for the generation of scores and sound files in

this fashion creates, when they are combined in hybrid musical works, exactly

the kind of melding of electronic and instrumental sound worlds mentioned in

19

 February 5, 2012

the overview: striking pitch and rhythm structures will be audibly related

whether presented by acoustic instruments or in sound files.

The chronological placement and mixing in of sound files with CLM is

triggered according to the start times of notes in the score. This may be scaled up

or down for a faster or slower rendition of the score. Upward and downward

transpositions, from a user-defined zero-transposition point, will also be carried

out if the user so wishes, in accordance with the pitches’ deviation from the zero-

transposition point. This may also be scaled, as desired. slippery chicken takes

advantage here of the high-quality transposition algorithm of CLM;8 this

convolves its input with a sinc function. Duration may also be scaled so as to

create a thicker texture through overlaps (if input sound file lengths allow). Start

time within the input sound file can be automatically incremented upon reuse, in

order to avoid repetitions of opening details: if the algorithm is long enough, it

will slowly increment its way through the complete duration of each of the

sound files as they are processed in turn.

This engagement with slippery chicken in combination with CLM has become a

self-sufficient project, one that has, apart from the author’s main instrument-

with-computer works, generated a collection of short pieces in the form of

downloadable sound files. Contrary to traditional electroacoustic studio work

(which can often be thought of as sound sculpting) the approach here is to

8 Developed by Bill Schottstaedt in collaboration with Perry Cook and Julius

Smith.

20

 February 5, 2012

generate perhaps hundreds of sound files automatically from a given sound file

palette and set of compositional data. Sound file selection then becomes the main

activity when using the output of slippery chicken, in keeping with the Cage

quotation at the beginning of the overview. The best results of the algorithms

(with no post-output editing) are to be found on the internet as short but

complete pieces.9

Fibonacci Transitions

Transitions between different musical sections or states have been an

important characteristic of Western Classical music for centuries. In the

eighteenth and nineteenth centuries there were transitions between the first and

second subject groups in sonata form; in the twentieth century, there is the

textural morphing of Ligeti's micro-polyphonic structures in, for example,

Atmosphères (1961). Transition strategies are built into slippery chicken in two

main forms: the procession algorithm, which is described in the section on rhythm

chains below, and Fibonacci Transitions.

Transitions in slippery chicken are aimed at the development and variation of

musical material at the macrostructural level. For example, this could be used to

intersperse a new audio segment into a sample loop; to gradually transform the

repetition of one rhythm sequence into another; or to transition between different

harmonic fields; etc.

9 See http://www.sumtone.com/search.php?title=scei

21

 February 5, 2012

In Fibonacci Transitions, new elements are ‘folded into’ existing repeating

elements according to a number of repetitions determined by Fibonacci

numbers.10 Such transitions are available in simple two-datum (Figure 5) or

multi-datum forms (Figure 6).

Figure 5: Simple two-datum Fibonacci Transition.11

10 Fibonacci was the Italian mathematician (c.1170-c.1250) after whom the

famous number series is named. This is a simple progression where

successive numbers are the sum of the previous two: (0), 1, 1, 2, 3, 5, 8, 13,

21.... As we ascend the sequence, the ratio of two adjacent numbers becomes

closer to the so-called Golden Ratio (approx. 1:1.618).

11 Note that the number of items returned will always correspond to the first

argument. Varying repetitions of the lower order alternations will fill any

shortfall; these are labelled (1 fills) in Figure 5.

22

 February 5, 2012

Algorithms such as rhythm chains (see below) use Fibonacci Transitions

transparently. They were first used directly in the author’s breathing Charlie, for

alto saxophone and computer (Edwards 2004), to control the interspersion and

development of audio loop segments. A good example is from the author’s in

limine, for two soprano saxophones and computer (Edwards 2005). The reader

can listen to a sound file (sweet-sax-loops.mp3) from this piece online at

http://www.michael-edwards.org/sc/paper/. The segment interspersions here

are combined with microtonal transpositions for greater pitch variety and

interest. The process is of course automated: loop points can be entered in the

sound file editing software Audacity or WaveLab, and marker files created by

these programmes can be read by slippery chicken. An audio slice, from one

marker to the next, will be repeated a number of times determined by Fibonacci

Transitions, before the next audio slice is cut in. Once the second slice dominates,

according to the Fibonacci Transition, a third begins to be interspersed and the

process is repeated as many times as determined by the user, with as many slices

as desired, and with or without transpositions, shuffled permutations, etc.

Intra-Phrasal Loop Chopping

(fibonacci-transitions 100 '(s e q h))
(S S S S S S S S S E S S S S E S S E S S E S
E S E E S E E S E E E E E E E E E Q E E Q E
E Q E Q E Q Q E Q Q E Q Q Q Q Q Q Q Q Q H Q Q
H Q Q H Q H Q H H Q H H Q H H H H H Q H H H
H H H H H H H H H H H)

Figure 6: Multi-datum Fibonacci Transition.

23

 February 5, 2012

As the intention of slippery chicken was always the structural marrying of

computer-generated and instrumental resources, it became compelling to

transfer the idea of Fibonacci Transitioning audio loops into the score domain.

Chopping and looping of notated rhythms was first applied in the author’s cheat

sheet (Edwards 2007a), for solo electric guitar and eight-piece ensemble. The five

bars of four-part counterpoint shown in Figure 7 represent all the rhythmic and

contrapuntal material available for this 1167 bar piece.

Figure 7: Original rhythm sequence palette for the author’s cheat sheet.

The essentially DSP-inspired looping technique is applied to conventionally

notated musical material by dividing the five bars of four-part counterpoint into

400 segments: 100 per voice, ten per crotchet (quarter note), with ten crotchets

total in five 2/4 bars. The ten crotchet loop points have the semiquaver as the

shortest unit. The start and stop points were defined as (1 4) (1 3) (1 2) (2 4) (2 3)

(3 4) (1 1) (2 2) (3 3) (4 4), as illustrated in Figure 8.

24

 February 5, 2012

Figure 8: Semiquaver (16th note) loop points within a single crotchet (quarter note).

The progression through the 100 loop points per voice is controlled by a

modified Fibonacci Transitions call. The modification is a subroutine called remix-

in. This inserts earlier segments between adjacent segments so as to avoid a

purely binary opposition of rhythmic materials and thus enrich the musical

development and associations. It also provides more structural cohesion,

investigating previous segments’ rhythmic and metrical effects in the new

context.

The Fibonacci Transition in cheat sheet creates 2177 segments per voice, moving

from the beginning of the first bar to the end of the fifth of the original material

shown in Figure 7. It returns numbered references ranging from 1 to 100: 1-10

refer to the loop points in the first crotchet (quarter note); similarly 11-20 refer to

the loop points in the second crotchet, etc. The beginning and end of the

transition is shown in Figure 9.

25

 February 5, 2012

Taking the opening flute and clarinet parts, and comparing the score with the

original four-part counterpoint (line 1A in Figure 7), we can see how this

develops in Figure 10. The rhythms and meter were doubled for ease of reading.

Figure 10: Rhythmic loop slice mapping in the flute and clarinet parts at the beginning of

the author’s cheat sheet.

Figure 11 is an example from later in the piece (bar 226). It shows how the

process moves through the original material and what it yields rhythmically.

Only the solo guitar and strings shown. At this point in the piece the guitar is at

the beginning of bar 2 of 1D in the original rhythm sequence palette (Figure 7); the

strings are at the beginning of bar 2 of 1C. Note that the pitches are

automatically selected by slippery chicken according to the criteria discussed

(1 1 1 1 2 1 1 2 1 2 1 2 2 1 2 1 2 1 2 2 2 1 2 2 3 2 3 2
3 1 3 3 2 1 3 3 1 3 2 1 3 2 3 4 1 3 4 1 3 4 2 4 1 3 2 4 4
4 4 5 1 4 4 5 2 4 5 2 4 5 1 5 2 4 5 1 4 5 2 4 5 1 5 2 5 2
4 5 5 6 5 2 6 5 6 1 6 6 2 5 6 2 6 3 6 5 2 6 6 3 7 6 2 7 3
6 3 7 7 6 7 7 3 7 7 8 2 7 7 3 8 7 3 8
…
96 96 45 96 46 95 45 96 96 97 96 97 46 96 97 97 45 96 97
46 97 97 46 97 45 98 97 46 97 98 46 97 98 46 97 46 98 47
98 97 98 97 98 46 97 98 98 46 98 97 47 98 98 46 99 47 98
99 46 98 99 47 99 99 47 98 46 99 47 99 99 98 99 99 46 100
99 100 47 99 100 46 100)

Figure 9: Fibonacci Transition with remix-in modification

26

 February 5, 2012

above. Particularly interesting here are the repeated six-note microtonal chords

in the guitar. These are also algorithmically chosen and the fingerings are added

automatically. See below for a discussion of their generation.

Figure 11: Solo guitar and strings from page 23 of the author’s cheat sheet.

Transitioning Lindenmayer Systems

Lindenmayer Systems (or L-Systems) are in their simplest form deterministic.

For musical composition, this class of algorithms is often preferable to its

stochastic counterpart due to the repeatability of results when regenerating

material (regeneration typically being necessary in the generate-modify-

regenerate iterative process of algorithmic composition). See (Edwards 2011a,

64) for further discussion of this issue.

27

 February 5, 2012

In order to illustrate L-Systems, take a very simple example where a set of

rules is defined. These associate a key with two resulting keys, each of which in

turn forms a lookup key for an arbitrary number of substitutions (Figure 12).

Given a starting seed for the substitution procedure (or rewriting, as it is

more generally known), an infinite number of results can be generated. See

Figure 13 for an example of four generations of rewriting.

One of the properties and attractions of L-Systems is the self-similarity that

results. This could, for example, be used to organise recognisable musical

motifs.12 Self-similarity becomes clear when larger result sets are produced; see

12 See, for example, (Supper 2001, 50-52) for a discussion of the use of L-

Systems in Hanspeter Kyburz’s music.

1 → 2 3
2 → 1 3
3 → 2 1

Figure 12: Simple L-System rules.-System rules.

seed: 2
1 3

2 3 | 2 1
1 3 | 2 1 | 1 3 | 2 3

2 3 | 2 1 | 1 3 | 2 3 | 2 3 | 2 1 | 1 3 | 2 1

Figure 13: Step-by-step generation of results from simple L-System rules and a seed.

28

 February 5, 2012

Figure 16 for an illustration of this. The returned numbers (or any data type) can

of course be applied to any musical parameter or material.

A slippery chicken development, Transitioning L-Systems use data returned by

an L-System as lookup indices into a substitution table. This table may contain

any data, including further references to other data structures (e.g. rhythm

sequence palettes). The result of the substitution depends on transitions between

an arbitrary number of related but perhaps developing material—such

relationships are envisaged though they are not of course enforced. The

transitions are created by Fibonacci Transitions. Each of the transitions may also

contain an arbitrary number of data points in a list; these will be cycled through

each time a particular transition is returned.

Before considering the Transitioning L-Systems, perhaps a simple example of

cycling alone would clarify this. The slippery chicken implementation can be used

for simple cycling sequences by using the substitution data only, i.e. with no L-

System. This is not merely by way of illustration as such an approach has been

used, for instance, in the generation of harmonic sequences in the author’s I Kill

by Proxy, for piano, percussion, and computer (Edwards 2007b). This hour-long

triptych uses only 12 pitch sets, but in different transpositions for each of the three

linked pieces. When designing these sets, each was tested by ear for potential

subsequent sets. In some cases only two seemed to work, in others up to five.

Once the subsequent sets for each of the twelve were entered into the followers

(or more usually transitioning substitutions) list, a harmonic sequence was

generated that continuously varied but strictly followed the rules of progression

determined pragmatically, by ear. See Figure 14 for the structure used in I Kill by

29

 February 5, 2012

Proxy, noting that no transitions are yet present, rather, just a seed and its first

and subsequent followers.13

Figure 14: Simple sequences generated for the harmonic structure of the author’s I Kill by

Proxy.

Returning to cheat sheet, slippery chicken’s L-System implementation is used in

two further ways: as a simple L-System without transitions, and as a

13 To clarify, seed 1 returns as a first result 2, which is the first item in its

follower list. The next time we encounter 1, it will return 4, the second item

in its follower list. The next time again, 1 will return 2, etc. etc.

30

 February 5, 2012

Transitioning L-System. Their use in this musical context will now be discussed to

illustrate their properties.

As mentioned, in cheat sheet there are 2177 rhythm sequences created as loop

segments, each of which has an associated pitch set. All pitch sets are based on six

basic guitar fingerings but include pitch extensions above and below the guitar’s

range to be used by the ensemble. This illustrates a basic principle that the

author tends to follow in all algorithmic works: that working from the

instrument outwards—in particular, a software representation of how it is or can

be played—tends to create more instrumentally idiomatic works than trying to

fit the results of an algorithm, however interesting it may be, onto an instrument

for which the algorithm wasn’t designed.

The guitar fingerings are superimposed onto the scordatura guitar tuning

shown in Figure 15, where strings two and six are detuned by a quartertone.

Figure 15: Guitar tuning (scordatura) for the author’s cheat sheet.

The pitch sets were then created by a threefold process:

 1) 6 guitar chords were chosen by ear. These had fingerings: (4 2 1 3) (4 1

2 3) (4 1 3 2) (3 2 1 4) (3 4 1 2) (4 3 1 2). The sequencing of these was organised by

a simple L-sequence: there are no transitions here but self-similar patterns do

emerge (Figure 16).

31

 February 5, 2012

Figure 16: Self-similarity in L-System results.

2) Whether to play these chords on the four lowest, four middle, or four

highest strings (using the first finger as a barre on the remaining strings in each

case) is determined by a Transitioning L-System (Figure 17).

32

 February 5, 2012

Figure 17: cheat sheet’s guitar chord ternary Transitioning L-System.

Figure 17 has three transition sequences, each with three cyclic lists. The

latter correspond to which cyclic list will be returned at which stage of the

Fibonacci Transition as it is spread over the 2177 chords, i.e. beginning, middle,

and end. Each of these cyclic lists, in all three transition sequences, tend to

become higher by the end, with transition sequence 1 also generally being lower

than 2, which is lower than 3. What this creates, when the algorithm is run, is a

tendency to move from lower to higher chords as viewed across the whole piece.

However, by creating the transition in this manner, the development does not

take place in an obvious, linear way—which our sophisticated auditory-cognitive

33

 February 5, 2012

system could all too quickly pick up on and perhaps judge as being too

predictable—rather, it takes place in an unpredictable manner when viewed

locally, but in a clearly rising manner when perceived globally.

3) We now have fingerings and strings, but no fret position. This is

determined in an altogether different manner, by a ‘fret curve’ (or breakpoint

function: see Figure 18.). The guitar generally has 19 frets, so the chords can be

created with the first finger placed on frets 1-15.

Figure 18: First finger fret selection curve for the author’s cheat sheet. The x-axis is scaled

automatically to fit the 2177 chords.

When this threefold process is combined, the result is a list of chord

references each consisting of three elements:

1. which four of the six strings to finger (lowest four, middle four, or highest

four)

2. the first finger fret (1-15)

34

 February 5, 2012

3. the fingering, as an index (1-6) into the fingering list ((4 2 1 3) (4 1 2 3) (4 1

3 2) (3 2 1 4) (3 4 1 2) (4 3 1 2)))

The beginning and end of the results of this process are shown in Figure 19.

Set Manipulation

As discussed, cheat sheet proceeds harmonically from guitar fingerings. With

the purpose of obtaining extra pitches for the ensemble that lie above and below

the guitar’s range, the intervallic relationship of the guitar chord is mapped onto

its highest and lowest notes. This process has been genericised in the stack

method: The interval structure of a set is duplicated, interleaving from the top

note upwards, and the bottom note downwards. Going downwards proceeds

symmetrically, so for example if we have a major triad, with ascending intervals

of a major and minor third, this will be reflected downwards with the same

intervals in the same order, thus resulting in a minor triad (Figure 20).

(LOW 1 5) (LOW 1 3) (LOW 1 5) (MEDIUM 1 3) (LOW 1 5) (LOW 1 6)
(LOW 1 5) (MEDIUM 1 3) (LOW 1 5) (MEDIUM 1 3) (HIGH 1 1) (LOW 1 4)
(LOW 1 1) (LOW 1 5) (LOW 1 3) (MEDIUM 1 6) (MEDIUM 1 4) (LOW 1 6)
(LOW 1 2) (LOW 1 6) (LOW 1 3) (HIGH 1 1) (HIGH 1 4) (LOW 1 1)
(MEDIUM 1 2) (LOW 1 3) (LOW 1 2) (MEDIUM 1 4)
 …
(HIGH 5 3) (HIGH 5 6) (LOW 6 2) (MEDIUM 6 3) (LOW 6 2) (HIGH 6 4)
(HIGH 7 3) (MEDIUM 7 1) (LOW 7 4) (MEDIUM 7 1) (LOW 8 4) (HIGH 8 5)
(MEDIUM 8 2) (HIGH 8 1) (HIGH 9 3) (HIGH 9 1) (HIGH 9 4) (MEDIUM 9 1)
(MEDIUM 10 5) (HIGH 10 3) (MEDIUM 10 6)(LOW 10 5) (HIGH 11 3)
(HIGH 11 6) (HIGH 11 4) (HIGH 11 6) (HIGH 12 2) (MEDIUM 12 6)
(HIGH 12 3) (LOW 12 1) (HIGH 13 4) (MEDIUM 13 1) (HIGH 13 2)
(MEDIUM 13 3) (MEDIUM 14 2) (LOW 14 4) (LOW 14 3) (MEDIUM 14 1)
(HIGH 15 4) (HIGH 15 1) (HIGH 15 4)

Figure 19: Results of the Transitioning L-System combined with the simple L-

System and the fret curve for the generation of the chord sequence in the author’s
cheat sheet.

35

 February 5, 2012

Figure 20: The stack algorithm applied once and four times to a C-Major triad.

Due to cheat sheet’s microtonal guitar scordatura, the stack extensions would

normally result in a high incidence of quartertones. In practice, the extensions

were contracted by a quartertone so as to result in less microtones and thus

simpler pitching and fingering for the ensemble players. See Figure 21 for

examples of this process using the six guitar fingering patterns discussed.

36

 February 5, 2012

Figure 21: Guitar chords and ensemble extensions for the author’s cheat sheet.

set limits

The range of these harmonies is quite similar, but it is unlikely that all the

notes in them will ever sound simultaneously; rather, they form the pitch sets

from which notes and chords will be selected. Nevertheless, were this range to

remain so similar for each pitch set in the piece, then the textural development

could become quite stagnant. We have seen that transitions are an important

part of the slippery chicken concept; this applies as equally to pitch material as to

other musical parameters. set limits can be applied to a piece in the form of two

optional breakpoint functions, one for the designated highest, the other for the

lowest pitch. The breakpoint functions will be scaled over the whole duration of

the piece, so an arbitrary x-axis range is possible. Thus, despite a current set

perhaps occupying a range of five octaves from a low bass note, the piece’s

37

 February 5, 2012

current lower limit as defined through the interpolating breakpoint function

might restrict this to notes above middle C. The limiting process is essentially

the same as that applied when choosing notes for each instrument: the set in that

case is limited, temporarily, to the instrument’s range. Furthermore, set limits can

be applied on a global as well as on a player-by-player basis. It is thereby

possible to set an instrument’s tessitura to be high, low, middling, or full range in

different parts of the piece, independently of the other instruments and the range

of the pitches available from the current set.

Rhythm Chains

Another slippery chicken innovation, rhythm chains were first used in the

author’s altogether disproportionate, for piano and computer (Edwards 2010). They

were used more elaborately in you are coming into us who cannot withstand you

(Edwards 2011c). This algorithmic work is for eight-piece ensemble only, i.e. no

computer or electronics are used during the performance.

Deceptively simple on the page, you are coming into us who cannot withstand

you gains its impetus from the combination of small, simple rhythmic units that

form larger, sometimes repeating sequences. These are placed in potentially

polymetric opposition to similarly constructed, contrapuntally combined

sequences. As used in you are coming, the tempi are quick, the energy level is

high, and the perception of multiple pattern streams moving at different rates is

the main intended feature of the music.

In rhythm chains, there are an arbitrary number of one beat rhythmic units of

arbitrary complexity. An example of one such unit is simply a quaver (eighth

38

 February 5, 2012

note) rest followed by a quaver note; another is even simpler: a single crotchet

(quarter note) note. These rhythmic units are then strung together to form the

chain, which internal to slippery chicken means a series of rhythm sequences and an

automatically generated map. The order in which the units are algorithmically

combined into rhythm sequences is determined either by a Fibonacci Transition or

by the procession algorithm. The latter moves through a list by alternating

adjacent elements, progressing through to the higher-order elements by

interspersion, but with an algorithmic eye on more or less equal statistical

distribution, e.g. 1 2 1 2 3 1 3 1 1 4 2 3 2 4 3 4 3 4 5 2 4 2 2 5 1 3 1 5 4 5 4 5 6 3 5 3 3 6

1. A piece using rhythm chains may make use of both Fibonacci Transitions and

procession for organising the rhythmic units.

However many such rhythmic units there are, there must be a matching

number of partner units towards which a transition is made over the course of

the whole piece. The transition between the two unit collections (or more if

desired) is handled by the Fibonacci Transition algorithm. In you are coming, the

transition is from exactly such preponderantly simple binary rhythms as

described above, to preponderantly ternary rhythms, i.e., those characterised by

triplets (Figure 22).

The simple one-beat units are intended to form faster-moving parts; these are

counterpointed by usually slower moving units of two or three beats. The

technique is therefore essentially two-part contrapuntal, though this can be

scaled up to any number of parts—in you are coming, eight. Again, we use

Fibonacci Transitions or the procession algorithm in the generation of the 2/3-beat

39

 February 5, 2012

rhythm order, i.e., the order in which each 2/3-beat unit is used, not the order in

which we select either a 2-beat or a 3-beat unit.14

Figure 22: The rhythmic cells used for rhythm chains in the author’s you are coming into us

who cannot withstand you.

To clarify Figure 22, the chaining of the faster-moving units in 1-BEAT-

RTHMS-A (mainly simple binary rhythms) transitions over the course of the

piece to be replaced by those in 1-BEAT-RTHMS-B (mainly ternary rhythms).

Similarly, with the slower-moving 2-beat rhythm chaining, we transition from

SLOWER-RTHMS-1A to SLOWER-RTHMS-1B when the algorithm calls for a 2-

14 This is decided more simply cycling through the list 2 3 2 2 3 2 2 3 3 3.

40

 February 5, 2012

beat unit, and from SLOWER-RTHMS-2A to SLOWER-RTHMS-2B when it calls

for a 3-beat unit.

The grouping of an arbitrary number of slower moving units into shorter or

longer rhythm sequences (with, as always, one pitch set per rhythm sequence) is

determined by a user-defined harmonic rhythm: this may change during the

piece and is controlled by a breakpoint function. The repetitions of both units

and sequences, with or without the repetition of their associated pitches, creates

identifiably recurring material which, through the additional insertion of rests

and new contrapuntal combinations, constantly varies an essentially consistent,

flowing musical structure.

Variation of density and activity is provided by the algorithmic control of

rests in two forms: through the interaction of multiple cycles of rests, and user-

defined activity levels. Together these determine the relative mix of rests to notes:

this can vary from very sparse to unbroken. Both approaches are controlled by

the use of breakpoint functions which map over the whole generated structure.

Figure 23 shows the process in action at the opening of the flute and clarinet

parts of you are coming. In this case, the flute is the slower-moving part.

41

 February 5, 2012

Figure 23: Flute and clarinet parts at the opening of the author’s you are coming into us

who cannot withstand you.

Conclusion
Though focussed mainly on the algorithmic production of complete pieces for

instruments and computer, the slippery chicken package includes several unique

approaches to generating musical structure that may be used in other contexts.

Its top-down approach to compositional organisation offers considerable

potential for explorative, iterative development, freeing the composer from the

commitment to a single labour-intensive path. This can lead, if so desired, to

unimagined aesthetic realms with relative ease. Its integration of score and MIDI

file writing, along with the use of the same musical data for the generation of

sample-driven sound files, strengthens the audible structural links between the

often disparate worlds of acoustic and electronic composition. Its approach to

various transition strategies can be employed towards creating evolving musical

structures out of relatively little, and therefore coherent, musical material. Its

42

 February 5, 2012

release as open-source, object-oriented Common Lisp code encourages further

development and extensions on the part of the user.

More generally speaking, slippery chicken is a bridging technology. As

traditional composition training does not usually include algorithmic or

computer music techniques, but assuming that their incorporation into

compositional practice is inevitable, it is essential—as with any new

technological approach—that bridging mechanisms are found.15 In industry, a

leap from one technology to another presents a business risk, even if the main

task is shared, as with the shift from the typewriter to the word processor. It is

essential to proceed with caution, if the customer base is to be retained. Thus we

have transition solutions, often with computer software and even hardware that

have a rather ‘analogue feel’ to them. Most word processors, for instance, have a

virtual sheet of paper and virtual tab stops; and we type with a keyboard that is

not by accident related to the typewriter. However, when extended over decades

and in different contexts this approach can become a hindrance. A significant

part of the music software industry still offers interfaces and concepts developed

from, and in some cases ever more reminiscent of, analogue studio equipment:

virtual tracks, patch cords, synthesizer keyboards, knobs, even power buttons.

Nostalgia marketing would seem to be more the motivation behind the interface

15 The author learned this, perhaps surprisingly but most conspicuously,

whilst working as a software engineer, on a project that had nothing to do

with music, but rather business document recognition.

43

 February 5, 2012

here than the oft-heard argument that analogue processing is superior to digital,

ergo an analogue emulation is preferable in the absence of such hardware.

Irrespective of the veracity of that argument, the utility of such music software

interfaces and their resultant workflow is often questionable: sometimes they are

quite simply cumbersome. For music composition, as opposed to sound

processing/sequencing/mixing, such interfaces are most often inappropriate.

Systems based around or including programming interfaces (such as slippery

chicken or the Scheme scripting interface to Common Music 3) offer the potential to

move further along the technology bridge.

Perhaps the developments arising from the debate surrounding the relative

merits of analogue versus digital studio technology has most convincingly

shown that combining the old with the new is the best solution. This applies just

as well to music composition and performance. Formats that continue to include

rather than bypass the talented and highly-trained acoustic musicians which our

musical infrastructure has at its disposal arguably yield the most impact,

particularly when viewed, for better or for worse, from the audience’s

perspective. To this end, hybrid works combining digital and acoustic

instrumental technologies are ideal. slippery chicken is focussed on exactly such

musical bridging solutions: using the computer to combine and meld together

electronic and acoustic resources at both the structural and formal level.

Acknowledgements

Thanks to Johannes Goebel and the Center for Art and Media Technology

(ZKM), Karlsruhe, Germany, for Guest Artist stipends in 2000 and 2001, during

44

 February 5, 2012

which the bulk of the design and programming was completed for the main

algorithmic system of slippery chicken.

Thanks also to Rick Taube, author of Common Music, for allowing the

inclusion of CM 2.6.0 in the slippery chicken release and subsystem. The author's

debt to Common Music is considerable in that his introduction to algorithmic

composition was through CM and therefore its approach made an indelible

stamp on his algorithmic music thinking, especially in its approach to output-

independent processes. As no doubt some users will be interested in using CM

in conjunction with slippery chicken, the latter includes the whole of CM 2.6.0 as

part of its installation procedure. It also uses a few of CM’s routines for

pitch/MIDI/frequency conversion and MIDI file writing.

Bill Schottstaedt must be thanked for CLM and CMN. Though these are not

included in the slippery chicken installation, its use in combination with them is all

the richer for it.

It goes without saying that slippery chicken is intended to complement, not

duplicate or replace CM, CLM, or CMN. Any deficiencies of slippery chicken are

the result of the author’s failures, not those of Bill or Rick.

Preparation of this software for open-source public release was supported by

the UK's Arts & Humanities Research Council [grant number AH/J004529/1].

References
Alsop, R. 1999. “Exploring the self through algorithmic composition.”

Leonardo Music Journal, 9 (1), 89 – 94.

45

 February 5, 2012

Austin, L., J. Cage, and L. Hiller. 1992. “An Interview with John Cage and

Lejaren Hiller”. Computer Music Journal, 16 (4), 15–29.

Bel, B. 1998. “Migrating Musical Concepts: An Overview of the Bol

Processor.” Computer Music Journal, 22 (2), 56–64.

Bewley, J. 2004. “Lejaren A. Hiller: Computer Music Pioneer.” Music Library

Exhibit, University of Buffalo. http://library.buffalo.edu/libraries/units/music/

exhibits/hillerexhibitsummary.pdf (accessed August 12th 2009).

Cope, D. 1996. “Experiments in Musical Intelligence.” Madison, WI: A-R

Editions.

Edwards, M. 2000. “slippery when wet.” (Musical composition.)

http://www.sumtone.com/work.php?workid=5.

Edwards, M. 2004. “breathing Charlie”. (Musical composition.)

http://www.sumtone.com/work.php?workid=132.

Edwards, M. 2005. “in limine”. (Musical composition.)

http://www.sumtone.com/work.php?workid=131.

Edwards, M. 2007a. “cheat sheet”. (Musical composition.)

http://www.sumtone.com/work.php?workid=182.

Edwards, M. 2007b. “I Kill by Proxy”. (Musical composition.)

http://www.sumtone.com/work.php?workid=178.

Edwards, M. 2009. “who says this, saying it’s me?” (Musical composition.)

http://www.sumtone.com/work.php?workid=261.

Edwards, M. 2010. “altogether disproportionate”. (Musical composition.)

http://www.sumtone.com/work.php?workid=275.

46

 February 5, 2012

Edwards, M. 2011a. “Algorithmic Composition: Computational Thinking in

Music.” Communications of the Association for Computing Machinery, 54 (7), 58–67.

Edwards, M. (2011b). don’t flinch. (Musical composition.)

http://www.sumtone.com/work.php?workid=304.

Edwards, M. 2011c. “you are coming into us who cannot withstand you”

(Musical composition.) http://www.sumtone.com/work.php?workid=307.

Essl, K. 2007. The Cambridge Companion to Electronic Music, 107–125.

Cambridge: Cambridge University Press.

Essl, K. 2010. Real Time Composition Library.

http://www.essl.at/works/rtc.html (accessed 22/1/2012).

Diaz-Jerez, G. 2000. FractMus.

http://www.gustavodiazjerez.com/fractmus_overview.html (accessed

22/1/2012).

McCartney, J. 2011. SuperCollider. http://supercollider.sourceforge.net

(accessed 22/1/2012).

Monro, G. 1997. “This is art, not science.” Leonardo Music Journal, 7 (1), 77.

Nienhuys, H.-W. 2011. LilyPond. http://www.lilypond.org/ (accessed

22/1/2012).

Nierhaus, G. 2009. Algorithmic Composition. New York: Springer-Verlag.

Puckette, M. 2011. Pure Data. http://crca.ucsd.edu/~msp/software.html

(accessed 22/1/2012).

Puckette, M. and D. Zicarelli 2011. Max/MSP.

http://cycling74.com/products/max/ (accessed 22/1/2012).

47

 February 5, 2012

Roads, C. 1996. The Computer Music Tutorial. Cambridge, Massachusetts: MIT

Press.

Schottstaedt, B. 2011a. Common Lisp Music.

https://ccrma.stanford.edu/software/clm/ (accessed 22/1/2012).

Schottstaedt, B. 2011b. Common Music Notation. Open-source music

software. https://ccrma.stanford.edu/software/cmn/ (accessed 22/1/2012).

Supper, M. (2001). “A Few Remarks on Algorithmic Composition.” Computer

Music Journal, 25 (1), 48–53.

Taube, H. 2005. Common Music 2.6.0. http://commonmusic.sourceforge.net/

(accessed 22/1/2012).

