

AN INTRODUCTION TO SLIPPERY CHICKEN

Michael Edwards

Music
University of Edinburgh

ABSTRACT

This article introduces a new open-source algorithmic
composition system, slippery chicken, which enables a
top-down approach to musical composition. Specific
techniques in slippery chicken are introduced along
with examples of their usage in the author’s
compositions. The software was originally tailor-
made to encapsulate the author's personal composition
techniques, however many general-purpose
algorithmic composition tools have been programmed
that should be useful to a range of composers. The
main goal of the project is to facilitate a melding of
electronic and instrumental sound worlds, not just at
the sonic but at the structural level. Techniques for
the innovative combination of rhythmic and pitch
data—arguably one of the most difficult aspects of
making convincing musical algorithms—are also
offered. The software was developed by the author in
the Common Lisp Object System and released as open-
source software in May 2012; see
http://www.michael-edwards.org/sc.1

1. INTRODUCTION

“Formerly, when one worked alone, at a
given point a decision was made, and one
went in one direction rather than another;
whereas, in the case of working with another
person and with computer facilities, the need
to work as though decisions were scarce—as
though you had to limit yourself to one
idea—is no longer pressing. It’s a change
from the influences of scarcity or economy to
the influences of abundance and—I’d be
willing to say—waste.” (John Cage, quoted
in [1])

The potential for software algorithms to enrich our
musical culture has been established, in the 50+ years
since such techniques were first introduced, by
personalities as diverse as Hiller, Xenakis, Cage, and
Eno. Algorithmic composition usually involves the
use of a finite set of step-by-step procedures, most
often encapsulated in software routines, to create
music. The power of such systems is, arguably, still
not fully understood or deeply investigated by the
majority of musicians and composers, whether highly
trained or not. Indeed, in the author’s experience, a lot
of the prejudice algorithmic composition pioneer

1 Preparation of this software for open-source public release was
supported by the UK's Arts & Humanities Research Council [grant
number AH/J004529/1].

Hiller suffered under [3] is still with us today. But
there are clearly many riches to be mined in
algorithmic composition, as the expression of
compositional ideas in software often leads to
unexpected and surprisingly new, exciting results, and
these can seldom be achieved via traditional means.2
Algorithmic composition techniques can thus play a
vital and energising role in the development of
modern music across all genres and styles.

slippery chicken is an open-source, specialised
algorithmic composition program written in the
general programming language Common Lisp and its
object-oriented extension, the Common Lisp Object
System (CLOS). Work on slippery chicken has been
ongoing since 2000. By specialised as opposed to
generalised, it is meant that the software was
originally tailor-made to encapsulate the author’s
personal composition techniques and to suit his own
compositional needs and goals. As the software has
developed however, many general-purpose
algorithmic composition tools have been programmed
that should be useful to a range of composers. The
system does not produce music of any particular
aesthetic strain—for example, although not
programmed to generate tonal music the system is
quite capable of producing it. But if it is to be used to
generate complete pieces it does prescribe a certain
specialised approach; this will be described below.

slippery chicken has no graphical user interface and
there are no plans to make one. Whilst it is clear that
this will be off-putting to some, there are many
benefits to interacting with such a system through the
programming language it was created in, not least of
which is the infinite-extensibility that such an
approach infers. As the computer science adage goes,
“When using WYSIWYG [What You See Is What
You Get] systems, What You See Is All You'll Ever
Get.”3

The algorithmic system in slippery chicken is
mainly deterministic but also includes stochastic
elements if desired4. It has been used to create
musical structure for pieces since its inception and for
several years now has been at the stage where it can
generate, in one pass, complete musical scores for
traditional instruments. It can also, with the same data
used to generate those scores, write sound files using
samples, or MIDI file realisations of the instrumental

2 Though the composer Clarence Barlow would perhaps disagree
with this, as he states that in his algorithmic works “he would obtain
the same results without the help of a computer” [16, 49].
3 Despite much internet attribution, Donald E. Knuth has confirmed
to the author that this quotation did not stem from him.
4 Including, but not limited to, permutations in both a deterministic
and random order. slippery chicken offers the use of fixed-seed
randomness, so that repeatable results may be generated. For a
discussion of the usefulness of such see [5, 64].

score. The project's main aim is to facilitate a melding
of electronic and instrumental sound worlds, not just
at the sonic but also at the structural level.1 Hence
certain processes common in one medium (for
instance sound file slicing and looping) are transferred
to another (the slicing up of notated musical phrases
and the instigation of sub-phrase loops, for example).
Techniques for the innovative combination of
rhythmic and pitch data—arguably one of the most
difficult aspects of making convincing musical
algorithms—are also offered.

The system includes but is not mainly concerned
with the automation of some of the more laborious
aspects of instrumental composition—transposition,
harmonic and rhythmic manipulation for example—
and thus facilitates and encourages experimentation
with musical data before committing to final forms.
By generating music data algorithmically, independent
of output format, structures become available for use
in the preparation of digital and notated music—in the
digital case, particularly for the generation of
parameters for the digital synthesis and signal
processing language Common Lisp Music (CLM
[13]). The programme in nascent form was first used
for the generation of the tape part of a piece by the
author for solo violin, ensemble, and stereo tape:
slippery when wet2. Its effectiveness in sonically and
structurally integrating the instrumental and digital
resources in that piece provided the impetus to pursue
the idea further.

What slippery chicken is focused upon then is
harnessing the rich data structure management of
Common Lisp and CLOS to achieve a top-down
approach to musical composition: defining, ordering,
combining, and manipulating rhythmic, pitch, sound
file, instrumental, and dynamic information, etc., into
complete pieces of music or structures ready for
further processing within or outwith the system. The
output of the program is in the form of:
• MIDI files, generated with the help of Common

Music's MIDI routines (CM 2.6.0 [16]), and
containing all the tempo and meter information
that facilitates reading into music notation
software such as Sibelius or Finale

• music scores:
o postscript files generated by interfacing with

Common Music Notation (CMN [14]), and
thus allowing the algorithmic use of
arbitrary symbols, note heads, etc., for the
encapsulation of extended instrumental
techniques that are difficult or impossible to
encode in MIDI

o LilyPond input text files [10], with similar
advantages to CMN, but more scope for
post-generation intervention

1 Though it can be used purely for instrumental or computer music
also.
2 http://www.sumtone.com/work.php?workid=5.

• sound files, using samples driven by a custom,
multi-channel CLM instrument.

The approach to algorithmic composition here is
sequence or phrase-based (though this should not be
confused with MIDI sequencing). In its most basic
form, we define a certain number—a palette, in
slippery chicken terms—of rhythmic phrases and pitch
sets, then map these onto instruments through rhythm
and set map objects which, when combined, select
notes to form a complete piece.

One of the more challenging aspects of algorithmic
composition—at least in pieces where there should be
a semblance of phrases formed of horizontally
connected notes—is the satisfactory combination of
rhythms with pitches.3 For instance, if we were to
place a rhythmic phrase without pitch information in
front of a trained composer, s/he could no doubt sing
or play back a number of pitch contours that would
subjectively work with these rhythms. The corollary
of this is that not all pitch contours would work with
the given rhythms, and that the contours would be
influenced by the given rhythms, even if several
solutions were available and the general shape of a
line were more important than the exact pitches
chosen. The reverse is also true: if the composer were
offered a pitch contour without rhythms, then the
selected rhythms would be influenced by the shape of
the line. The process of matching one to the other is
complex and idiosyncratic, dependent on culture,
musical experience, taste, etc. Thus formalisation of
this process is difficult.

slippery chicken’s solution is to allow for the
provision of an arbitrary number of pitch sequences
(perhaps even algorithmically) to each rhythm
sequence. The pitch sequences consist of a list of
simple integers, one for each attacked rhythm (i.e. not
for tied notes), over a user-defined range but where,
for example, 2 would indicate a higher pitch than 1.

When rhythm sequences have been mapped to
ensemble players, and pitch sets (harmonic material)
to rhythm sequences, it is then a matter of slippery
chicken selecting pitches from the current pitch set
and pitch sequence. The algorithm will of course only
choose notes that are within each instrument’s range.
A hierarchy to specify which instrument is given
priority when the algorithm is assigning notes to
instruments can also be defined, as an algorithmic
attempt will be made to use as many notes of the set as
possible, spreading them out amongst the instruments
in the ensemble.4

Figure 1 and Figure 2 show how this pitch
selection algorithm can work for two instruments,

3 There are of course musical systems which decouple the
organisation of pitch and rhythm material: medieval isorhythmic
motets, integral serialism, and Cage’s music composed with the I
Ching, for example. But the interdependence of these two
parameters continues to exist in a wide variety of musical contexts.
4 Though there is a preference for selecting unused pitches from the
set, if this is not possible then previously used pitches will be added
until the number of notes available are as close as possible to the
pitch sequence's ideal number.

flute and bassoon, with the pitch sequence 9 9 9 (3) 9
9 (3) 5. Numbers in parentheses indicate that a chord
may be selected from the pitch set, if appropriate for
the instrument. There is provision for adding chord
selection hook functions (a default is provided) so that
custom chords can be created for each instrument, or
piece, as desired.

The pitch set in Figure 1 has intentionally few low
notes so that we can see how the range of the
algorithmically generated bassoon line is
comparatively narrow in comparison with that of the
flute. The number of pitches available for an
instrument might be considerably more or less than
would ideally be demanded by the numbers in the
pitch sequence, so the integer range of the pitch-
sequence is either shifted or scaled by the number of
available notes. The actual notes chosen are a
function of a lookup routine, using the scaled/shifted
and rounded pitch sequence numbers as indices. It is
clear then that pitch sequences marry pitch contour to
rhythm sequences but that they cannot be coerced into
always and in any context specifying exact pitches.
This is not the aim, especially as any pitch sequence
can be applied to any pitch set and any instrument.

Figure 1. pitch set example used in Figure 2.

Figure 2. Example pitch selections for the pitch

sequence 9 9 9 (3) 9 9 (3) 5.

Simple in concept at least then, the basic procedure for
using slippery chicken—any part of which may be
algorithmically or manually delivered—can be
summed up as defining:

1. the instruments’:
a. ranges
b. transpositions
c. chord selection functions (if applicable)
d. microtonal potential
e. unplayable notes (e.g. microtones)

2. the instrument changes for individual players
(e.g. flute to piccolo)

3. the set palette (harmonic fields) that the
piece will use

4. the rhythm sequence palette
5. the set map: sets onto sequences
6. the rhythm sequence map: sequences onto

instruments
7. the tempo maps

8. the set limits: for the whole piece and/or
instruments.

2. GENERAL FEATURES

Although slippery chicken can of course perform
many labour-intensive tasks (such as score writing,
transposition, and, through its fundamental algorithms,
pitch selection and sequence compiling), its main
attraction is not, as the general computer myth would
have it, as a labour saving system. For composers,
arguably the primary benefit of this project and of
algorithmic composition in general is that the
encapsulation and expression of compositional
structure in software often involves a form of practical
experimentation which can lead to surprisingly new,
rewarding, and exciting results. Randomness is not
the issue here: many deterministic and, upon initial
examination, seemingly predictable algorithms lead
through the combination of a few steps to
unimaginable music.

slippery chicken straddles the two poles of
compositional process formalisation and what some
would consider a relinquishing of compositional
autonomy. With one of its main (but not unique)
features being a bridging solution—leading composers
with little algorithmic experience into the world of
music computing, and bringing computer generation
techniques to the world of instrumental music—
slippery chicken offers a structured method as opposed
to a composition software library. Clearly, any
algorithmic composition system demands a certain,
often idiosyncratic approach: it is a question of to
what degree. Some systems are more open than
others, and are therefore more akin to a software
library: SuperCollider [8], Pure Data [11], Max/MSP
[12], and systems made with the latter such as the Real
Time Composition Library [6], for example. Others
are more specialised: FractMus [7], David Cope’s
Experiments in Musical Intelligence [4], and Bernard
Bel’s Bol Processor [2].

slippery chicken is more akin to the specialised
group. This is clearly its greatest advantage: complete
pieces of music can be generated with relatively little
input from the user. But, individualistic as they most
often are, many composers won't find the method to
their taste. These may still consider some of the
slippery chicken classes, algorithms, and methods
attractive. Many of the techniques can be applied
without being coerced into the map/palette approach
to generating complete pieces, so the package could be
employed more as a software tool library also.

Because of its delivery format as an open-source,
object-oriented Lisp package, slippery chicken is
infinitely extensible. It can be used in its simplest
form by entering the necessary musical data in lists
and allowing the system to generate a complete piece
of music. Or it can generate pieces, sections, phrases,
etc., by making more sophisticated use of its internal
generative classes and/or user-programmed extensions
and subclasses. The generated data structures can also

be altered through a host of included editing functions
and methods. Here is where the tension between
idealism and pragmatism found at the very beginnings
of computer-based algorithmic composition and
discussed in [5, 62-63] arises. To summarize briefly:
Lejaren Hiller believed that if the output of the
algorithm is deemed deficient, then the programme
should be modified and the output regenerated;
whereas Koenig and Xenakis took a more practical
approach, treating the output of their algorithms to
transcription, modification, and elaboration. Despite
its perhaps idealistic goal of generating complete and
coherent musical works, with its collection of internal
data editing functions, slippery chicken remains
solidly pragmatic. In its pre-2006 form, before the
introduction of the pitch-selection algorithm, slippery
chicken was arguably more in the camp of computer-
aided composition than that of algorithmic
composition, to use Monro’s distinction [9]. It is now
more firmly in the algorithmic composition camp,
with the potential to act merely as a digital
composition assistant if so desired.

3. SLIPPERY CHICKEN TECHNIQUES AND
ALGORITHMS

3.1. With CLM

When writing sound files with a custom, 4-channel
CLM instrument, slippery chicken uses essentially the
same data as used for generating MIDI and score files.
Notation details such as ties, dots, clefs, etc., have no
bearing upon sound file generation of course, and are
thus ignored. In order to generate sound files, a sound
file palette slot in the slippery chicken object is used.
This stores data associated with groups of sound files;
they will be cycled through during the algorithmic
processing. There can be any number of sound file
groups, allowing the musical data to be applied to
several different categories of sound. This can create
interesting variations of recognizably similar musical
material. Moreover, the use of the same musical data
for the generation of scores and sound files in this
fashion creates, when they are combined in hybrid
musical works, exactly the kind of melding of
electronic and instrumental sound worlds mentioned
in the overview: striking pitch and rhythm structures
will be audibly related whether presented by acoustic
instruments or in sound files.

The chronological placement and mixing in of
sound files with CLM is triggered according to the
start times of notes in the score. This may be scaled
up or down for a faster or slower rendition of the
score. Upward and downward transpositions, from a
user-defined zero-transposition point, will also be
carried out if the user so wishes, in accordance with
the pitches’ deviation from the zero-transposition
point. This may also be scaled, as desired. slippery
chicken takes advantage here of the high-quality

transposition algorithm of CLM1; this convolves its
input with a sinc function. Duration may also be
scaled so as to create a thicker texture through
overlaps (if input sound file lengths allow). Start time
within the input sound file can be automatically
incremented upon reuse, in order to avoid repetitions
of opening details: if the algorithm is long enough, it
will slowly increment its way through the complete
duration of each of the sound files as they are
processed in turn.

This engagement with slippery chicken in
combination with CLM has become a self-sufficient
project, one that has, apart from the author’s main
instrument-with-computer works, generated a
collection of short pieces in the form of downloadable
sound files. Contrary to traditional electroacoustic
studio work (which can often be thought of as sound
sculpting) the approach here is to generate perhaps
hundreds of sound files automatically from a given
sound file palette and set of compositional data.
Sound file selection then becomes the main activity
when using the output of slippery chicken, in keeping
with the Cage quotation at the beginning of the
overview. The best results of the algorithms (with no
post-output editing) are to be found on the internet as
short but complete pieces.2

3.2. Fibonacci Transitions

Transitions between different musical sections or
states have been an important characteristic of
Western Classical music for centuries. In the
eighteenth and nineteenth centuries there were
transitions between the first and second subject groups
in sonata form; in the twentieth century, there is the
textural morphing of Ligeti's micro-polyphonic
structures in, for example, Atmosphères (1961).
Transition strategies are built into slippery chicken in
two main forms: the procession algorithm3 and
Fibonacci Transitions.

Transitions in slippery chicken are aimed at the
development and variation of musical material at the
macrostructural level. For example, this could be used
to intersperse a new audio segment into a sample loop;
to gradually transform the repetition of one rhythm
sequence into another; or to transition between
different harmonic fields; etc.

In Fibonacci Transitions, new elements are ‘folded
into’ existing repeating elements according to a
number of repetitions determined by Fibonacci
numbers4. Such transitions are available in simple

1 Developed by Bill Schottstaedt in collaboration with Perry Cook
and Julius Smith.
2 http://www.sumtone.com/search.php?title=scei
3 This moves through a list by alternating adjacent elements,
progressing through to the higher-order elements by interspersion,
but with an algorithmic eye on more or less equal statistical
distribution (e.g. 1 2 1 2 3 1 3 1 1 4 2 3 2 4 3 4 3 4 5 2 4 2 2 5 1 3 1
5 4 5 4 5 6 3 5 3 3 6 1).
4 Fibonacci was the Italian mathematician (c.1170-c.1250) after
whom the famous number series is named. This is a simple

two-datum (Figure 3) or multi-datum forms (Figure
4).

Figure 3. Simple two-datum Fibonacci Transition.1

slippery chicken algorithms such as rhythm chains2

use Fibonacci Transitions transparently. They were
first used directly in the author’s breathing Charlie,3
for alto saxophone and computer, to control the
interspersion and development of audio loop
segments. A good example is from the author’s in
limine,4 for two soprano saxophones and computer.
The reader can listen to a sound file (sweet-sax-
loops.mp3) from this piece online.5 The segment
interspersions here are combined with microtonal
transpositions for greater pitch variety and interest.
The process is of course automated: loop points can be
entered in the sound file editing software Audacity or
WaveLab, and marker files created by these
programmes can be read by slippery chicken. An
audio slice, from one marker to the next, will be
repeated a number of times determined by Fibonacci
Transitions, before the next audio slice is cut in. Once
the second slice dominates, according to the Fibonacci
Transition, a third begins to be interspersed and the
process is repeated as many times as determined by
the user, with as many slices as desired, and with or
without transpositions, shuffled permutations, etc.

3.3. Intra-Phrasal Loop Chopping

As the intention of slippery chicken was always the
structural marrying of computer-generated and
instrumental resources, it became compelling to

progression where successive numbers are the sum of the previous
two: (0), 1, 1, 2, 3, 5, 8, 13, 21.... As we ascend the sequence, the
ratio of two adjacent numbers becomes closer to the so-called
Golden Ratio (approx. 1:1.618).

1 Note that the number of items returned will always correspond to
the first argument. Varying repetitions of the lower order
alternations will fill any shortfall; these are labelled (1 fills) in
Figure 3.
2 http://sites.ace.ed.ac.uk/algocomp/2011/07/01/you-are-coming-
into-us-who-cannot-withstand-you/
3 http://www.sumtone.com/work.php?workid=132
4 http://www.sumtone.com/work.php?workid=131
5 http://www.michael-edwards.org/sc/paper/

transfer the idea of Fibonacci Transitioning audio
loops into the score domain. Chopping and looping of
notated rhythms was first applied in the author’s cheat
sheet,6 for solo electric guitar and eight-piece
ensemble. The five bars of four-part counterpoint
shown in Figure 5 represent all the rhythmic and
contrapuntal material available for this 1167 bar piece.

Figure 5. Original rhythm sequence palette for the

author’s cheat sheet.

The essentially DSP-inspired looping technique is

applied to conventionally notated musical material by
dividing the five bars of four-part counterpoint into
400 segments: 100 per voice, ten per crotchet (quarter
note), with ten crotchets total in five 2/4 bars. The ten
crotchet loop points have the semiquaver as the
shortest unit. The start and stop points were defined
as (1 4) (1 3) (1 2) (2 4) (2 3) (3 4) (1 1) (2 2) (3 3) (4
4); see Figure 6.

Figure 6. Semiquaver (16th note) loop points within

a single crotchet (quarter note).

The progression through the 100 loop points per

voice is controlled by a modified Fibonacci
Transitions call. The modification is a subroutine
called remix-in. This inserts earlier segments between
adjacent segments so as to avoid a purely binary
opposition of rhythmic materials and thus enrich the
musical development and associations. It also
provides more structural cohesion, investigating
previous segments’ rhythmic and metrical effects in
the new context.

The Fibonacci Transition in cheat sheet creates
2177 segments per voice, moving from the beginning
of the first bar to the end of the fifth of the original
material shown in Figure 5. It returns numbered
references ranging from 1 to 100: 1-10 refer to the
loop points in the first crotchet (quarter note);
similarly 11-20 refer to the loop points in the second
crotchet, etc. The beginning and end of the transition
is shown in Figure 7.

6 http://www.sumtone.com/work.php?workid=182

(fibonacci-transitions 100 '(s e q h)) 
(S S S S S S S S S E S S S S E S S E S S E S
 E S E E S E E S E E E E E E E E E Q E E Q E E
 Q E Q E Q Q E Q Q E Q Q Q Q Q Q Q Q Q H Q Q H
 Q Q H Q H Q H H Q H H Q H H H H H Q H H H H H
 H H H H H H H H H)

Figure 4. Multi-datum Fibonacci Transition.

Taking the opening flute and clarinet parts, and

comparing the score with the original four-part
counterpoint (line 1A in Figure 5), we can see how
this develops in Figure 8. The rhythms and meter
were doubled for ease of reading.

Figure 8. Rhythmic loop slice mapping in the flute
and clarinet parts at the beginning of the author’s

cheat sheet.

3.4. Transitioning Lindenmayer Systems

Lindenmayer Systems (or L-Systems) are in their
simplest form deterministic. For musical composition,
this class of algorithms is often preferable to its
stochastic counterpart due to the repeatability of
results when regenerating material (regeneration
typically being necessary in the generate-modify-
regenerate iterative process of algorithmic
composition). See [5, 64] for further discussion of
this issue and for examples of a basic L-System.

One of the attractions of L-Systems is self-
similarity; see Figure 10 for an illustration of this.
The generated numbers (or any data type) can of
course be applied to any musical parameter or
material.

A slippery chicken development, Transitioning L-
Systems use data returned by an L-System as lookup
indices into a substitution table. This table may
contain any data, including further references to other
data structures (e.g. rhythm sequence palettes). The
result of the substitution depends on transitions
between an arbitrary number of related but perhaps
developing material—such relationships are envisaged
though they are not of course enforced. The
transitions are created by Fibonacci Transitions. Each
of the transitions may also contain an arbitrary number
of data points in a list; these will be cycled through
each time a particular transition is returned.

Returning to cheat sheet, slippery chicken’s L-
System implementation is used in three main ways: as
a straightforward cycling mechanism; as a simple L-
System without transitions; and as a Transitioning L-
System. The latter two uses in this musical context
will now be discussed to illustrate their properties.

As mentioned, in cheat sheet there are 2177
rhythm sequences created as loop segments, each of

which has an associated pitch set. All pitch sets are
based on six basic guitar fingerings but include pitch
extensions above and below the guitar’s range to be
used by the ensemble. This illustrates a basic
principle that the author tends to follow in all
algorithmic works: that working from the instrument
outwards—in particular, a software representation of
how it is or can be played—tends to create more
instrumentally idiomatic works than trying to fit the
results of an algorithm, however interesting it may be,
onto an instrument for which the algorithm wasn’t
designed.

The guitar fingerings are superimposed onto the
scordatura guitar tuning shown in Figure 9, where
strings two and six are detuned by a quartertone.

Figure 9. Guitar tuning (scordatura) for the author’s

cheat sheet.

A threefold process created the pitch sets:
1) 6 guitar chords were chosen by ear. These had

fingerings: (4 2 1 3) (4 1 2 3) (4 1 3 2) (3
2 1 4) (3 4 1 2) (4 3 1 2). The sequencing
of these was organised by a simple L-sequence: there
are no transitions here but self-similar patterns do
emerge (Figure 10).

Figure 10. Self-similarity in L-System results.

2) Whether to play these chords on the four lowest,

four middle, or four highest strings (using the first
finger as a barre on the remaining strings in each
case) is determined by a Transitioning L-System
(Figure 11).

(1 1 1 1 2 1 1 2 1 2 1 2 2 1 2 1 2 1 2 2 2 1 2
 2 3 2 3 2 3 1 3 3 2 1 3 3 1 3 2 1 3 2 3 4 1 3
 4 1 3 4 2 4 1 3 2 4 4 4 4 5 1 4 4 5 2 4 5 2 4
 …
 98 98 46 98 97 47 98 98 46 99 47 98 99 46 98
 99 47 99 99 47 98 46 99 47 99 99 98 99 99 46
 100 99 100 47 99 100 46 100)

Figure 7. Fibonacci Transition with remix-in
modification

Figure 11. cheat sheet’s guitar chord ternary

Transitioning L-System.

Figure 11 has three transition sequences, each with

three cyclic lists. The latter correspond to which
cyclic list will be returned at which stage of the
Fibonacci Transition as it is spread over the 2177
chords, i.e. beginning, middle, and end. Each of these
cyclic lists, in all three transition sequences, tend to
become higher by the end, with transition sequence 1
also generally being lower than 2, which is lower than
3. What this creates, when the algorithm is run, is a
tendency to move from lower to higher chords as
viewed across the whole piece. However, by creating
the transition in this manner, the development does not
take place in an obvious, linear way—which our
sophisticated auditory-cognitive system could all too
quickly pick up on and perhaps judge as being too
predictable—rather, it takes place in an unpredictable
manner when viewed locally, but in a clearly rising
manner when perceived globally.

3) We now have fingerings and strings, but no fret
position. This is determined in an altogether different
manner, by a ‘fret curve’ (or breakpoint function: see
Figure 12.). The guitar generally has 19 frets, so the
chords can be created with the first finger placed on
frets 1-15.

Figure 12. First finger fret selection curve for the

author’s cheat sheet. The x-axis is scaled
automatically to fit the 2177 chords.

When this threefold process is combined, the result

is a list of chord references each consisting of three
elements:

1. which four of the six strings to finger (lowest
four, middle four, or highest four)

2. the first finger fret (1-15)
3. the fingering, as an index (1-6) into the

fingering list ((4 2 1 3) (4 1 2 3) (4 1 3 2) (3 2
1 4) (3 4 1 2) (4 3 1 2)))

The beginning and end of the results of this
process are shown in Figure 13.

See Figure 14 for some results of this process
using the six guitar fingering patterns discussed.

Figure 14. Guitar chords and ensemble extensions

for the author’s cheat sheet.

4. CONCLUSION

Though focussed mainly on the algorithmic
production of complete pieces for instruments and
computer, the slippery chicken package includes
several unique approaches to generating musical
structure that may be used in other contexts. Its top-
down approach to compositional organisation offers
considerable potential for explorative, iterative
development, freeing the composer from the
commitment to a single labour-intensive path. This
can lead, if so desired, to unimagined aesthetic realms
with relative ease. Its integration of score and MIDI
file writing, along with the use of the same musical
data for the generation of sample-driven sound files,
strengthens the audible structural links between the
often-disparate worlds of acoustic and electronic
composition. Its approach to various transition

(LOW 1 5) (LOW 1 3) (LOW 1 5) (MEDIUM 1 3)
(LOW 1 5) (LOW 1 6) (LOW 1 5) (MEDIUM 1 3)
(LOW 1 5) (MEDIUM 1 3) (HIGH 1 1) (LOW 1 4)
(LOW 1 1) (LOW 1 5) (LOW 1 3) (MEDIUM 1 6)
(MEDIUM 1 4) (LOW 1 6) (LOW 1 2) (LOW 1 6)
(LOW 1 3) (HIGH 1 1) (HIGH 1 4) (LOW 1 1)
…
(HIGH 11 6) (HIGH 11 4) (HIGH 11 6) (HIGH 12 2)
(MEDIUM 12 6) (HIGH 12 3) (LOW 12 1)
(HIGH 13 4) (MEDIUM 13 1) (HIGH 13 2)
(MEDIUM 13 3) (MEDIUM 14 2) (LOW 14 4)
(LOW 14 3) (MEDIUM 14 1) (HIGH 15 4)
(HIGH 15 1) (HIGH 15 4)

Figure 13. Results of the Transitioning L-
System combined with the simple L-System and

the fret curve for the generation of the chord
sequence in the author’s cheat sheet.

strategies can be employed towards evolving musical
structures out of relatively little, and therefore
coherent, musical material. Its release as open-source,
object-oriented Common Lisp code encourages further
development and extensions on the part of the user.

5. REFERENCES

[1] Austin, L., J. Cage, and L. Hiller. 1992.
“An Interview with John Cage and
Lejaren Hiller”. Computer Music
Journal, 16 (4), 15–29.

[2] Bel, B. 1998. “Migrating Musical
Concepts: An Overview of the Bol
Processor.” Computer Music Journal, 22
(2), 56–64.

[3] Bewley, J. 2004. “Lejaren A. Hiller:
Computer Music Pioneer.” Music
Library Exhibit, University of Buffalo.
http://library.buffalo.edu/libraries/units/
music/ exhibits/hillerexhibitsummary.pdf
(accessed August 12th 2009).

[4] Cope, D. 1996. “Experiments in Musical
Intelligence.” Madison, WI: A-R
Editions.

[5] Edwards, M. 2011a. “Algorithmic
Composition: Computational Thinking
in Music.” Communications of the
Association for Computing Machinery,
54 (7), 58–67.

[6] Essl, K. 2010. Real Time Composition
Library.
http://www.essl.at/works/rtc.html
(accessed 22/1/2012).

[7] Diaz-Jerez, G. 2000. FractMus.
http://www.gustavodiazjerez.com/fractm
us_overview.html (accessed 22/1/2012).

[8] McCartney, J. 2011. SuperCollider.
http://supercollider.sourceforge.net
(accessed 22/1/2012).

[9] Monro, G. 1997. “This is art, not
science.” Leonardo Music Journal, 7 (1),
77.

[10] Nienhuys, H.-W. 2011. Lilypond.
http://www.lilypond.org/ (accessed
22/1/2012).

[11] Puckette, M. 2011. Pure Data.
http://crca.ucsd.edu/~msp/software.html
(accessed 22/1/2012).

[12] Puckette, M. and D. Zicarelli 2011.
Max/MSP.
http://cycling74.com/products/max/
(accessed 22/1/2012).

[13] Schottstaedt, B. 2011a. Common Lisp
Music.
https://ccrma.stanford.edu/software/clm/
(accessed 22/1/2012).

[14] Schottstaedt, B. 2011b. Common Music
Notation. Open-source music
software.

https://ccrma.stanford.edu/software/cmn/
(accessed 22/1/2012).

[15] Supper, M. (2001). “A Few Remarks on
Algorithmic Composition.” Computer
Music Journal, 25 (1), 48–53.

[16] Taube, H. 2005. Common Music 2.6.0.
http://commonmusic.sourceforge.net/
(accessed 22/1/2012).

