slippery chicken

Generated with ROBODoc Version 4.99.36 (Mar 13 2010)

May 24, 2012

Contents

1 SC/ALL.LSP

1 sc/all.lsp

[Modules |
NAME:

all
File:
Version:
Project:

Purpose:

Author:

Creation date:

all.lsp
1.0.0-beta2
slippery chicken (algorithmic composition)

Load all the lisp files associated with slippery-chicken
No public interface envisaged (so no robodoc entries).

Michael Edwards: m@michael-edwards.org

5th December 2000

$$ Last modified: 14:00:53 Thu May 17 2012 BST

SVN ID: $Id: all.lsp 2045 2012-05-24 16:28:00Z medward2 $

2 sc/cm

[Modules |
NAME:

cm

File:

Class Hierarchy:

Version:
Project:

Purpose:

cm.1lsp

none (no classes defined)

1.0.0-beta2

slippery chicken (algorithmic composition)

Definition of common-music related and other functions

like transposition of notes/chords, enharmonic
equivalents etc.

2 SC/CM

Author: Michael Edwards: m@michael-edwards.org
Creation date: 1st March 2001
$$ Last modified: 20:59:39 Sat May 19 2012 BST

SVN ID: $Id: cm.lsp 1982 2012-05-24 15:35:54Z medward2 $

2.1 cm/degree-to-note

[¢m | [Functions]

ARGUMENTS:

An integer that is a scale degree number.

OPTIONAL ARGUMENTS:

- The scale from which the note-name pitch symbol associated with the

specified scale degree is to be drawn. As this is a cm function, the cm
tuning names must be used; i.e., cm::*chromatic-scalex*.

RETURN VALUE:
A note-name pitch symbol.

EXAMPLE:

(in-scale :chromatic)
(degree-to-note 127)

=> G9

(in-scale :twelfth-tone)
(degree-to-note 127)

=> ATSO

(in-scale :quarter-tone)
(degree-to-note 127)

=> EQF4
SYNOPSIS:

(defun degree-to-note (degree &optional (scale cm::*scalex))

2 SC/CM

2.2 cm/degrees-per-octave

[¢m | [Functions]
ARGUMENTS:

- No arguments.

RETURN VALUE:

- An integer that is the number of scale degrees in each octave.
EXAMPLE:

(in-scale :chromatic)
(degrees-per-octave)

=> 12

(in-scale :quarter-tone)
(degrees-per-octave)

=> 24
SYNOPSIS:

(defun degrees-per-octave ()

2.3 cm/degrees-per-semitone

[em | [Functions]
ARGUMENTS:

- No arguments
OPTIONAL ARGUMENTS:

- The scale for which the number of degrees per semitone is to be
retrieved.

RETURN VALUE:

An integer.

2 SC/CM

EXAMPLE:

(in-scale :chromatic)
(degrees-per-semitone)

=1

(in-scale :twelfth-tone)
(degrees-per-semitone)

=> 6

(in-scale :quarter-tone)
(degrees-per-semitone)

=> 2
SYNOPSIS:

(defun degrees-per-semitone (&optional (scale cm::*scalex))

2.4 cm/degrees-to-notes

[em | [Functions]
ARGUMENTS:

An integer that is a scale degree number in the current tuning.
RETURN VALUE:

A list of note-name pitch symbols.

EXAMPLE:

(in-scale :chromatic)
(degrees-to-notes ’(0 143 116 127 38))

=> (C-1 B10 AF8 G9 D2)

(in-scale :twelfth-tone)
(degrees-to-notes ’(0 144 116 127 38 287 863))

=> (C-1 C1 GSSO ATSO FSSS-1 CTF3 CTF11)

2 SC/CM

(in-scale :quarter-tone)

(degrees-to-notes ’(0 144 116 127 38 287))
=> (C-1 C5 BF3 EQF4 GO BQS10)

SYNOPSIS:

(defun degrees-to-notes (degrees)

2.5 cm/freq-to-degree

[em | [Functions]
ARGUMENTS:

A frequncy in Hertz.

OPTIONAL ARGUMENTS:

- The scale in which to find the corresponding scale degree.
RETURN VALUE:

A scale degree number. This may be a decimal number.
EXAMPLE:

(in-scale :chromatic)
(freq-to-degree 423)

=> 68.317856

(in-scale :twelfth-tone)
(freq-to-degree 423)

=> 409.9071

(in-scale :quarter-tone)
(freq-to-degree 423)

=> 136.63571

SYNOPSIS:

(defun freq-to-degree (degree &optional (chromatic-scale nil))

2 SC/CM

2.6 cm/freqg-to-note

[¢m | [Functions]
ARGUMENTS:

A number that is a frequency in Hertz.

OPTIONAL ARGUMENTS:

- The scale in which the note-name pitch equivalent is to be sought.
RETURN VALUE:

A note-name pitch symbol.

EXAMPLE:

(in-scale :chromatic)
(freq-to-note 423)

=> AF4

(in-scale :twelfth-tone)
(freq-to-note 423)

=> GSSS4

(in-scale :quarter-tone)
(freq-to-note 423)

=> AQF4
SYNOPSIS:

(defun freq-to-note (freq &optional (scale cm::*scalex))

2.7 cm/get-pitch-bend

[em | [Functions]
ARGUMENTS:

A frequency in Hertz.

2 SC/CM

RETURN VALUE:

A two-digit decimal number that is the pitch-bend value required to achieve
the specified frequency in MIDI.

EXAMPLE:
(get-pitch-bend 423)
=> 0.32

SYNOPSIS:

(defun get-pitch-bend (freq)

2.8 cm/in-scale

[em | [Functions]
ARGUMENTS:

- A scale (tuning) designation.
RETURN VALUE:

Lisp REPL feedback on the tuning now set.
EXAMPLE:

(in-scale :chromatic)
=> #<tuning "chromatic-scale">
(in-scale :quarter-tone)
=> #<tuning "quarter-tone">
(in-scale :twelfth-tone)
=> #<tuning "twelfth-tone">
SYNOPSIS:

(defun in-scale (scale)

2 SC/CM

2.9 cm/midi-file-high-low

[¢m | [Functions]
DATE:
30-Dec-2010
DESCRIPTION
Print the highest and lowest pitch in a specified MIDI file as a MIDI note

number.

NB: This is a Common Music function and as such must be called with the
package qualifier cm:: if used within slippery chicken.

ARGUMENTS:
- The path (including the name) to the MIDI file.
OPTIONAL ARGUMENTS:

- An integer or NIL to indicate which track in the specified MIDI file is
to be accessed. If NIL, all tracks will be accessed. NB: CM (and
therefore slippery-chicken too) generates some MIDI files by writing each
channel to a different track, so the "track" would seem synonymous with
"channel" here.

RETURN VALUE:

Two integer values (using the values function) that are the highest and
lowest pitches in the specified MIDI file.

EXAMPLE:

(cm::midi-file-high-low "/tmp/multi-ps.mid")
=> 72, 60

SYNOPSIS:

(defun midi-file-high-low (file &optional track)

2.10 cm/midi-file-one-note

[em | [Functions]
ARGUMENTS:

2 SC/CM

- the file path as a string
- the note to write (symbol or midi note number)
- the new channel to write note to (counting from 1)

OPTIONAL ARGUMENTS:

- the old channel: if given, only notes on this channel will be written
(counting from 1).

RETURN VALUE:
the path to the new file

EXAMPLE:

;33 (cm::midi-file-one-note
HHH "/Users/medward2/mus/altogether/altogether.mid" ’c4 9)

SYNOPSIS:

(defun midi-file-one-note (file note channel &optional old-channel)

2.11 cm/midi-to-degree

[¢m | [Functions]
ARGUMENTS:

- A MIDI note number.
RETURN VALUE:

- An integer that is the scale-degree equivalent of the specified MIDI note
number in the current scale.

EXAMPLE:

(in-scale :chromatic)
(midi-to-degree 64)

=> 64

(in-scale :twelfth-tone)
(midi-to-degree 64)

10

2 SC/CM

=> 384

(in-scale :quarter-tone)
(midi-to-degree 64)

=> 128
SYNOPSIS:

(defun midi-to-degree (midi-note)

2.12 cm/midi-to-freq

[em | [Functions]
ARGUMENTS:

- A number (can be a decimal) that is a MIDI note number.
RETURN VALUE:

A decimal number that is a frequency in Hertz.
EXAMPLE:

(midi-to-freq 67)

=> 391.99542

(midi-to-freq 67.9)

=> 412.91272

SYNOPSIS:

(defun midi-to-freq (midi-note)

2.13 cm/midi-to-note

[em | [Functions]
ARGUMENTS:

- An integer that is a MIDI note number.

11

2 SC/CM

RETURN VALUE:

A note-name pitch symbol.
EXAMPLE:

(midi-to-note 67)

=> G4

SYNOPSIS:

(defun midi-to-note (midi-note)

2.14 cm/note-to-degree

[em | [Functions]
ARGUMENTS:

- A note-name pitch symbol.

OPTIONAL ARGUMENTS:

- The scale in which to find the scale-degree of the specified pitch.
RETURN VALUE:

An integer that is a scale degree in the current scale.

EXAMPLE:

(in-scale :chromatic)
(note-to-degree ’AF4)

=> 68

(in-scale :twelfth-tone)
(note-to-degree ’AF4)

=> 408

(in-scale :quarter-tone)
(note-to-degree ’AF4)

=> 136

12

2 SC/CM

SYNOPSIS:

(defun note-to-degree (note &optional (scale cm

2.15 cm/note-to-freq

[em | [Functions]
ARGUMENTS:

- A note-name pitch symbol.
RETURN VALUE:

A frequency in Hertz.
EXAMPLE:

(in-scale :chromatic)
(note-to-freq ’AF4)

=> 415.3047

(in-scale :twelfth-tone)
(note-to-freq ’GSSS4)

=> 423.37845

(in-scale :quarter-tone)
(note-to-freq ’AQF4)

=> 427.47403

SYNOPSIS:

(defun note-to-freq (mote)

2.16 cm/note-to-midi

[cm | [Functions |

ARGUMENTS:

- A chromatic note-name pitch symbol.

::1xscalex))

13

2 SC/CM 14

RETURN VALUE:
An integer.

EXAMPLE:
(note-to-midi ’g4)

=> 67

SYNOPSIS:

(defun note-to-midi (midi-note)

2.17 cm/parse-midi-file

[¢m] [Functions |

ARGUMENTS:
- The path (including the file name) to the MIDI file.
OPTIONAL ARGUMENTS:

- An integer or NIL to indicate which track in the specified MIDI file is
to be accessed. If NIL, all tracks will be accessed. NB: CM (and
therefore slippery-chicken too) generates some MIDI files by writing each
channel to a different track, so the "track" would seem synonymous with
"channel" here.

RETURN VALUE:
The CM data for the MIDI events in the specified file.
EXAMPLE:
(cm: :parse-midi-file "/tmp/multi-ps.mid")
=>
Event #i(midi-tempo-change time 0.0 usecs 1000000)
Event #i(midi time 0.0 keynum 72 duration 0.5 amplitude 0.6929134 channel 0)
Event #i(midi time 0.0 keynum 65 duration 0.5 amplitude 0.6929134 channel 1)

Event #i(midi time 0.0 keynum 60 duration 0.5 amplitude 0.6929134 channel 2)
Event #i(midi-time-signature time 0.0 numerator 4 denominator 4 clocks 24 32nds 8)

3 SC/CM-LOAD

Event #i(midi-time-signature time O.
Event #i(midi-time-signature time O.

Event #i(midi-tempo-change time 0.0 usecs
Event #i(midi-tempo-change time 0.0 usecs
Event #i(midi-tempo-change time 0.0 usecs

Event #i(midi time
Event #i(midi time
Event #i(midi time
Event #i(midi time
Event #i(midi time
Event #i(midi time
Event #i(midi time
Event #i(midi time
Event #i(midi time
Event #i(midi time
Event #i(midi time
Event #i(midi time
Event #i(midi time
Event #i(midi time
Event #i(midi time
Event #i(midi time
Event #i(midi time
Event #i(midi time
Event #i(midi time
Event #i(midi time
Event #i(midi time
31 events total

SYNOPSIS:

0.

WWWWWWNNNMNNNNNMNNNFP, PR, R, RPRRPRR,OO

5

OO0 o1 OO O 0101 ol OO O U011 o1 OO O oo

(defun parse-midi-file

3 sc/cm-load

[Modules |
NAME:

cm-load
File:
Class Hierarchy:

Version:

cm-load.1lsp
none (no classes defined)

1.0.0-beta?2

keynum
keynum
keynum
keynum
keynum
keynum
keynum
keynum
keynum
keynum
keynum
keynum
keynum
keynum
keynum
keynum
keynum
keynum
keynum
keynum
keynum

67
71
64
60
72
62
67
71
64
60
72
65
67
71
64
60
72
62
67
71
64

duration
duration
duration
duration
duration
duration
duration
duration
duration
duration
duration
duration
duration
duration
duration
duration
duration
duration
duration
duration
duration

1000000)
1000000)
1000000)

O OO O OO OO ODIODIODODOOOOOOOOoOOo
O oo oo 00O OO OO0 OO OO On

.5

(file &optional track)

amplitude
amplitude
amplitude
amplitude
amplitude
amplitude
amplitude
amplitude
amplitude
amplitude
amplitude
amplitude
amplitude
amplitude
amplitude
amplitude
amplitude
amplitude
amplitude
amplitude
amplitude

O OO O OO OO ODIODIODODODOOOOOOoOOoOo

.6929134
.6929134
.6929134
.6929134
.6929134
.6929134
.6929134
.6929134
.6929134
.6929134
.6929134
.6929134
.6929134
.6929134
.6929134
.6929134
.6929134
.6929134
.6929134
.6929134
.6929134

0 numerator 4 denominator 4 clocks 24
0 numerator 4 denominator 4 clocks 24

channel
channel
channel
channel
channel
channel
channel
channel
channel
channel
channel
channel
channel
channel
channel
channel
channel
channel
channel
channel
channel

15

32nds 8)
32nds 8)

2)
0)
1)
2)
0)
1)
2)
0)
1)
2)
0)
1)
2)
0)
1)
2)
0)
1)
2)
0)
1)

4 SC/CMN

Project:

Purpose:

Author:
Creation date:

$$ Last modified:

16

slippery chicken (algorithmic composition)

Definition of the common-music quarter-tone scale and
twelfth-tone scale which should be loaded and not
compiled. The quarter tone scale is our default

No public interface envisaged (so no robodoc entries).
Michael Edwards: m@michael-edwards.org

7th February 2003

18:12:03 Wed Jan 4 2012 ICT

SVN ID: $Id: cm-load.lsp 1982 2012-05-24 15:35:54Z medward2 $

4 sc/cmn

[Modules |
NAME:

cmn
File:

Class Hierarchy:
Version:
Project:

Purpose:

Author:
Creation date:

$$ Last modified:

cmn.lsp

None: no classes defined.

1.0.0-beta2

slippery chicken (algorithmic composition)

Interface from complete-set to Bill’s CMN package for
displaying of sets in musical notation.

Michael Edwards: m@michael-edwards.org
11th February 2002

20:48:46 Mon Apr 30 2012 BST

SVN ID: $Id: cmn.lsp 1982 2012-05-24 15:35:54Z medward2 $

5 SC/CMN-GLYPHS

5 sc/cmn-glyphs

[Modules |
NAME:

cmn-glyphs

File:

Class Hierarchy:
Version:
Project:

Purpose:

Author:

Creation date:

$$ Last modified:

cmn-glyphs.1lsp

none, no classes defined

1.0.0-beta2

slippery chicken (algorithmic composition)

Definition of various postscript glyphs (accidentals
etc.) for cmn.

Michael Edwards: m@michael-edwards.org
10th November 2002

09:01:19 Mon Dec 12 2011 ICT

SVN ID: $Id: cmn-glyphs.lsp 1982 2012-05-24 15:35:54Z medward2 $

6 sc/instruments

[Modules |
NAME:

instrument

File:

Class Hierarchy:
Version:
Project:

Purpose:

instruments.lsp

none (no classes defined)

1.0.0-beta2

slippery chicken (algorithmic composition)

Definition of various standard instruments and other
data/functions useful to slippery-chicken users.

17

6 SC/INSTRUMENTS 18

Author: Michael Edwards: m@michael-edwards.org
Creation date: 30th December 2010
$$ Last modified: 14:59:08 Tue May 8 2012 BST

SVN ID: $Id: instruments.lsp 1982 2012-05-24 15:35:54Z medward2 $

6.1 instruments/+slippery-chicken-standard-instrument-palette+

[instruments | [Global Parameters |

SYNOPSIS:

(defparameter +slippery-chicken-standard-instrument-palette+
(make-instrument-palette
’slippery-chicken-standard-instrument-palette
;3 SAR Fri Jan 20 11:43:32 GMT 2012: Re-ordering these to Adler’s "standard"
;; score order for easier look-up
> ((piccolo
(:staff-name "piccolo" :staff-short-name "picc"
:lowest-written d4 :highest-written c7 :transposition-semitones 12
:missing-notes nil
:starting-clef treble
:chords nil
:microtones t
:midi-program 73))
(flute
(:staff-name "flute" :staff-short-name "fl"
:lowest-written c4 :highest-written d7
:missing-notes (cqs4 dqf4)
:starting-clef treble
:chords nil
:microtones t
:midi-program 74))
(alto-flute
(:staff-name "alto flute" :staff-short-name "alt f1"
:lowest-written c4 :highest-written c7 :transposition-semitones -5
:missing-notes (cqs4 dqf4)
:starting-clef treble
:chords nil
:microtones t
:midi-program 74))
;; SAR Fri Jan 20 11:46:45 GMT 2012: Modified bass flute range to that

6 SC/INSTRUMENTS 19

;; stated by Adler.
(bass-flute
(:staff-name "bass flute" :staff-short-name "bass f1"
:lowest-written c4 :highest-written c7 :transposition-semitones -12
:missing-notes (cqs4 dqf4)
:clefs-in-c (treble bass) :starting-clef treble
:chords nil
:microtones t
:midi-program 74))
;5 SAR Fri Jan 20 12:01:37 GMT 2012: Added oboe. Conservative range taken
;; from the Adler
(oboe
(:staff-name "oboe" :staff-short-name "ob"
:lowest-written bf3 :highest-written a6
:starting-clef treble
:chords nil
:midi-program 69))
(e-flat-clarinet
(:staff-name "E-flat clarinet" :staff-short-name "E-flat cl"
:lowest-written e3 :highest-written a6 :transposition-semitones 3
:missing-notes (ags4 bqf4 bgs4 cqsb dqfb gqf3 fqs3 fqf3)
:starting-clef treble
:chords nil
:microtones t
:midi-program 72))
(b-flat-clarinet
(:staff-name "B-flat clarinet" :staff-short-name "B-flat cl"
:lowest-written e3 :highest-written a6 :transposition-semitones -2
:missing-notes (ags4 bqf4 bgs4 cqsb dqfb gqf3 fgs3 fqf3)
:starting-clef treble
:chords nil
:microtones t
:midi-program 72))
(a-clarinet
(:staff-name "A clarinet" :staff-short-name "A cl"
:lowest-written e3 :highest-written a6 :transposition-semitones -3
:missing-notes (ags4 bqf4 bgs4 cqsb dqfb gqf3 fqs3 fqf3)
:starting-clef treble
:chords nil
:microtones t
:midi-program 72))
(bass-clarinet
(:staff-name "bass clarinet" :staff-short-name "bass cl"
:lowest-written c3 :highest-written g6 :transposition-semitones -14
:missing-notes (ags4 bqgf4 bgs4 cqsb dqf5 gqf3 fqgs3 fqf3 eqf3 dgs3 dqf3
cqs3)

6 SC/INSTRUMENTS 20

:prefers-notes low
:clefs (treble) :clefs-in-c (treble bass) :starting-clef treble
:chords nil
:microtones t
:midi-program 72))
(soprano-sax
(:staff-name "soprano saxophone" :staff-short-name "sop sax"
:lowest-written bf3 :highest-written fs6 :transposition-semitones -2
:missing-notes (ggs4 gqgsb5)
:starting-clef treble
:chords nil
:microtones t
:midi-program 65))

(alto-sax
(:staff-name "alto saxophone" :staff-short-name "alt sax"
;; altissimo extra....by hand...

:lowest-written bf3 :highest-written fs6 :transposition-semitones -9
:missing-notes (gqs4 ggsb)
:starting-clef treble
:chords nil
:microtones t
:midi-program 66))
(tenor-sax
(:staff-name "tenor sax" :staff-short-name "ten sax"
:lowest-written bf3 :highest-written fs6 :transposition-semitones -14
:missing-notes (ggs4 ggsb)
:starting-clef treble :clefs-in-c (treble bass)
:chords nil
:microtones t
:midi-program 67))
(baritone-sax
(:staff-name "baritone sax" :staff-short-name "bar sax"
:lowest-written bf3 :highest-written fs6 :transposition-semitones -21
:missing-notes (gqs4 ggsb)
:clefs-in-c (treble bass) :starting-clef treble
:chords nil
:microtones t
:midi-program 68))
(bassoon
(:staff-name "bassoon" :staff-short-name "bsn"
;; of course it can go higher but best not to algorithmically select
;; these
:lowest-written bfl :highest-written cb
;; Wolfgang Ruediger says all 1/4 tones are 0K above low E
:missing-notes (bqfl bgsl cqs2 dqf2 dgs2 eqf2)
:largest-fast-leap 13

6 SC/INSTRUMENTS 21

:clefs (bass tenor) :starting-clef bass
:chords nil
:microtones t
:midi-program 71))
(french-horn
(:staff-name "french horn" :staff-short-name "hn"
:lowest-written c3 :highest-written c6 :transposition-semitones -7
:clefs (treble bass) :starting-clef treble
:chords nil
:microtones t
:midi-program 61))
(c-trumpet
(:staff-name "trumpet in c" :staff-short-name "c tpt"
:lowest-written fs3 :highest-written c6
:clefs (treble) :starting-clef treble
:chords nil
:microtones t
:midi-program 57))
;5 SAR Fri Jan 20 12:09:41 GMT 2012: Added b-flat-trumpet from Adler
;3 MDE Mon Feb 20 20:02:55 2012 -- modified to keep in line with clarinet
(b-flat-trumpet
(:staff-name "B-flat trumpet" :staff-short-name "b-flat tpt"
;; the —-flat should be convereted in CMN and Lilypond to the flat sign
:lowest-written fs3 :highest-written d6 :transposition-semitones -2
:starting-clef treble
:chords nil
:midi-program 57))
;3 SAR Fri Jan 20 12:17:24 GMT 2012: Added tenor trombone from Adler
(tenor-trombone
(:staff-name "trombone" :staff-short-name "tbn"
:lowest-written e2 :highest-written bf4
:clefs (bass tenor) :starting-clef bass
:chords nil
:midi-program 58))
(vibraphone
(:staff-name "vibraphone" :staff-short-name "vib"
:lowest-written £3 :highest-written f6
:starting-clef treble
:chords t
:microtones nil
:midi-program 12))
(marimba
(:staff-name "marimba" :staff-short-name "mba"
:lowest-written c3 :highest-written c7
:starting-clef treble :clefs (treble) ; (treble bass)
:chords t

6 SC/INSTRUMENTS 22

:microtones nil
:midi-program 13))
(piano
(:staff-name "piano" :staff-short-name "pno"
:lowest-written a0 :highest-written c8
:largest-fast-leap 9
:clefs (treble bass double-treble double-bass) :starting-clef treble
:chords t :chord-function piano-chord-fun
:microtones nil
:midi-program 1))
;3 We generally treat the piano as two instruments (LH, RH), generating
lines separately. So this is the same as the piano instrument but has
; no staff-name and starts with bass clef. Use set-limits to change the
range of the two hands, as they’re both set to be full piano range
;; here.
(piano-1h
(:lowest-written a0 :highest-written c8
:largest-fast-leap 9
:chords t :chord-function piano-chord-fun
:clefs (treble bass double-treble double-bass) :starting-clef bass
:microtones nil
:midi-program 1))
(tambourine
(:staff-name "tambourine" :staff-short-name "tmb"
:lowest-written c4 :highest-written c4
:starting-clef percussion
:midi-program 1))
(guitar
(:staff-name "guitar" :staff-short-name "gtr"
:lowest-written e3 :highest-written b6 :transposition-semitones -12
:largest-fast-leap 31
:starting-clef treble
:chords t :chord-function guitar-chord-selection-fun
:microtones nil
:midi-program 28))
(soprano
(:staff-name "soprano" :staff-short-name "s"
:lowest-written c4 :highest-written c6
:starting-clef treble
:midi-program 54))
(violin
(:staff-name "violin" :staff-short-name "vln"
:lowest-written g3 :highest-written c7
:largest-fast-leap 13
:starting-clef treble
:chords t :chord-function violin-chord-selection-fun

6 SC/INSTRUMENTS 23

:microtones t
:midi-program 41))
(viola
(:staff-name "viola" :staff-short-name "vla"
:lowest-written c3 :highest-written f6
:largest-fast-leap 13
:clefs (alto treble) :starting-clef alto
:chords t :chord-function viola-chord-selection-fun
:microtones t
:midi-program 42))
(viola-d-amore
(:staff-name "viola d’amore" :staff-short-name "vla d’am"
:lowest-written a2 :highest-written f7
:largest-fast-leap 13
:clefs (alto treble) :starting-clef alto
:chords t :chord-function nil
:microtones t
:midi-program 41))
(cello
(:staff-name "cello" :staff-short-name "vc"
;; of course it can go higher but best not to algorithmically select
;; these
:lowest-written c2 :highest-written ab
:largest-fast-leap 12
:clefs (bass tenor treble) :starting-clef bass
:chords t :chord-function cello-chord-selection-fun
:microtones t
:midi-program 43))
(double-bass
(:staff-name "double bass" :staff-short-name "db"
:lowest-written e2 :highest-written gb :transposition-semitones -12
:prefers-notes low
:largest-fast-leap 10
:clefs (bass tenor treble) :starting-clef bass
:chords nil
:microtones t
:midi-program 44))
;5 SAR Thu Apr 12 18:19:21 BST 2012: Added "computer" part for "silent"
;; parts in case the user would like to create rhythmically independent
;5 computer parts.
(computer
(:staff-name "computer" :staff-short-name "comp"
:starting-clef percussion)))))

6 SC/INSTRUMENTS

6.2 instruments/cello-chord-selection-fun

[instruments | [Functions |

SYNOPSIS:

(let ((vc-III (make-pitch ’g2)))
(defun cello-chord-selection-fun (curve-num index pitch-list pitch-seq
instrument set)

6.3 instruments/chord-fun-aux

[instruments | [Functions |

ARGUMENTS:
The first six arguments -- curve-num, index, pitch-list, pitch-seq,
instrument, and set -- are inherited and not required to be directly

accessed by the user.

- An integer that is the step by which the function skips through the
subset of currently available pitches. A value of 2, for example, will
instruct the method to build chords from every second pitch in that
subset.

- An integer that is the number of pitches that should be in each resulting
chord. If the list of pitches available to an instrument is too short to
make a chord with x notes, a chord with fewer pitches may be made
instead.

- An integer that is the largest interval in semitones allowed between the
bottom and top notes of the chord. If a chord made with the specified
number of notes surpasses this span, a chord with fewer pitches may be
made instead.

EXAMPLE:

(defun new-chord-function (curve-num index pitch-list pitch-seq instrument set)

(chord-fun-aux curve-num index pitch-list pitch-seq instrument set 4 3 14))

=> NEW-CHORD-FUNCTION
SYNOPSIS:

(defun chord-fun-aux (curve-num index pitch-list pitch-seq instrument set
skip num-notes max-span)

24

6 SC/INSTRUMENTS 25

6.4 instruments/chord-funl

[instruments | [Functions |

SYNOPSIS:

(defun chord-funl (curve-num index pitch-list pitch-seq instrument set)

6.5 instruments/chord-fun2

[instruments | [Functions |

SYNOPSIS:

(defun chord-fun2 (curve-num index pitch-list pitch-seq instrument set)

6.6 instruments/guitar-chord-selection-fun

[instruments | [Functions |
SYNOPSIS:
(let ((last-chord ’()))

(defun guitar-chord-selection-fun (curve-num index pitch-list pitch-seq
instrument set)

6.7 instruments/piano-chord-fun

[instruments | [Functions |

SYNOPSIS:

(defun piano-chord-fun (curve-num index pitch-list pitch-seq instrument set)

6.8 instruments/string-chord-selection-fun

[instruments | [Functions |

SYNOPSIS:

(defun string-chord-selection-fun (curve-num index pitch-list pitch-seq
instrument set string-III)

7 SC/LILYPOND 26

6.9 instruments/viola-chord-selection-fun

[instruments | [Functions |

SYNOPSIS:

(let ((vla-III (make-pitch ’g3)))
(defun viola-chord-selection-fun (curve-num index pitch-list pitch-seq
instrument set)

6.10 instruments/violin-chord-selection-fun

[instruments | [Functions |

SYNOPSIS:

(let ((vln-IITI (make-pitch ’d4)))
(defun violin-chord-selection-fun (curve-num index pitch-list pitch-seq
instrument set)

7 sc/lilypond

[Modules |

7.1 lilypond/lp-get-mark

[lilypond | [Functions |
SYNOPSIS:

(a "-> ") ; accent

(1hp "-+ ")

;; see p229 of lilypond.pdf: need to define this command in file
(bartok "~\\snapPizzicato ")
(pizz "~\"pizz.\" ")

(ord ""\"ord.\" ")

(pizzp "~\"(pizz.)\" ")

(Clb ll”\llclb\llll)

(cl "~\"cl\" ")

(col-legno "~\"col legno\" ")
(clt "~\"clt\" ")

(arco ""\"arco\" ")

(batt "~\"batt.\" ")

(spe ""\"spe\" ")

7 SC/LILYPOND

(sp ""\"sul pont.\" ")

(mv ""\"molto vib.\" ")

(sv ""\"senza vib.\" ")
(poco-crini "~\"poco crini\" ")
(s "=. ™M

(nail (no-lp-mark ’nail))
(stopped (no-lp-mark ’stopped))

(as ||_>_. ’l)
(at "->-—- ")
(ts "-_ ")
(te "-- ™)

;; S0 unmeasured is implicit
(t3 (format nil ":7a " (* 32 (expt 2 num-flags))))
(flag "\\flageolet ")

(niente "“\markup { niente } ")
(pppp "\\pppP ")

(ppp "\\ppp ")

(pp "\\pp ")

(p n\\p "

(mp "\\mp ")

(mf "\\mf ")

(£ "\\f ")

(£f "\\ff ")

(££f "\\fff ")

(£££f "\\ffff ")

(sfz "\\sfz ")

(downbow "\\downbow ")

(upbow "\\upbow ")

(open "\\open ")

(0 "\\open n)
(1 n_1q u)
(2 n_o n)
(3 n_3 n)
(4 n_g u)

(I ""\\markup { \\teeny \"I\" } ")

(IT ""\\markup { \\teeny \"II\" } ")

(ITT ""\\markup { \\teeny \"III\" } ")

(IV ""\\markup { \\teeny \"IV\" } ")

(beg-s1 "(™)

(end-s1 ") ")

;; MDE Fri Apr 6 21:57:59 2012 -- apparently LP can’t have nested
;3 slurs but it does have phrase marks:
(beg-phrase "\\(")

(end-phrase "\\) ")

;; there’s no start gliss / end gliss in lilypond
(beg-gliss "\\glissando ")

7 SC/LILYPOND 28

(end-gliss "")

;3 13.4.11

(beg-8va "\\ottava #1 ")

(end-8va "\\ottava #0 ")

(beg-8vb "\\ottava #-1 ")

(end-8vb "\\ottava #0 ")

;; NB note heads should be added via (add-mark-before ... so if
;; adding new, add the mark symbol to the move-elements call in
;5 event::get-lp-data

(circled-x "\\once \\override NoteHead #’style = #’xcircle ")
(x-head "\\once \\override NoteHead #’style = #’cross ")
(triangle "\\once \\override NoteHead #’style = #’triangle ")
(triangle-up "\\once \\override NoteHead #’style = #’do ")

;3 (mensural "\\once \\override NoteHead #’style = #’slash ")
;; (flag-head "\\once \\override NoteHead #’style = #’harmonic-mixed
)

;; MDE Mon Apr 30 20:46:06 2012 -- see event::get-lp-data for how
;; this is handled

(flag-head "\\harmonic ")

;; MDE Mon Apr 30 20:46:31 2012 -- flag-heads by default don’t
;; display dots so we need to add-mark-before to get these to
;; display or turn them off again

(flag-dots-on "\\set harmonicDots = ##t ")

(flag-dots-off "\\set harmonicDots = ##f ")

(airy-head (no-lp-mark ’airy-head))

(none (no-lp-mark ’none))

(trill-f (no-lp-mark ’trill-f))

(trill-n (no-lp-mark ’trill-n))

(trill-s (no-lp-mark ’trill-s))

(beg-trill-a "\\pitchedTrill ") ; must be before note

;; we’ll also need e.g. (trill-note gb) to give the note in ()
(end-trill-a "\\stopTrillSpan ") ; after note

(square (no-lp-mark ’square))

(slash (no-lp-mark ’slash))

(arrow-up (no-lp-mark ’arrow-up))

(arrow-down (no-lp-mark ’arrow-down))

(cresc-beg "\\< ")

(cresc-end "\\! ")

(dim-beg "\\> ")

(dim-end "\\! ")

(k< "< ™)

> ">

;; NB this override has to come exactly before the note/dynamic it
;5 applies to

(hairpin0 "\\once \\override Hairpin #’circled-tip = ##t ")

;3 (dimO-beg "\\once \\override Hairpin #’circled-tip = ##t \\> ")

8 SC/PACKAGE

(pause "\\fermata ")

(short-pause

"“\\markup { \\musicglyph #\"scripts.ushortfermata\" } ")
;; MDE Thu Apr 5 16:17:11 2012 -- these need the graphics files in
;3 lilypond-graphics.zip to be in the same directory as the
;; generated lilypond files

(aeolian-light "~\\aeolianLight ")

(aeolian-dark "“\\aeolianDark ")

;; this one uses the graphic for close bracket

(bracket-end "“\\bracketEnd ")

(mphonic "~\\mphonic ")

(mphonic-arr "“\\mphonicArr ")

(mphonic-cons "“\\mphonicCons ")

(mphonic-diss "~\\mphonicDiss ")

(mphonic-cluster "“\\mphonicCluster ")

(sing ""\\sing ")

(sing-arr "“\\singArr ")

(arrow-up-down "~\\arrowUpDown ")

;55 end lilypond-graphics.zip files

;3 these must have been set up with the event::add-arrow method
(start-arrow "\\startTextSpan ")

(end-arrow "\\stopTextSpan ")

(harm "~\\flageolet ")

5 2.3.11

;; write sost. pedal as text (usually held for long time so brackets
;; not a good idea)

(ped "\\sustainOn ")

(ped”™ "\\sustainOff\\sustainOn ")

(ped-up "\\sustainOff ")

(uc "\\unaCorda ")

(tc "\\treCorde ")

8 sc/package

[Modules |

9 sc/permutations

[Modules |
NAME:

permutations

29

9 SC/PERMUTATIONS

File: permutations.lsp

Class Hierarchy: none, no classes defined.

Version: 1.0.0-beta2

Project: slippery chicken (algorithmic composition)
Purpose: Various permutation functions.

Author: Michael Edwards: m@michael-edwards.org
Creation date: 10th November 2002

$$ Last modified: 19:13:04 Tue May 8 2012 BST

SVN ID: $Id: permutations.lsp 1982 2012-05-24 15:35:54Z medward2 $

9.1 permutations/permutations

[permutations | [Functions |

ARGUMENTS:

An integer that indicates how many consecutive integers from O are to be
used for the process.

RETURN VALUE:

A list of sequences (lists), each of which is a permutation of the
original.

EXAMPLE:

;; Produce a list consisting of all permutations that can be made of 4
;; consecutive integers starting with O (i.e., (0 1 2 3))
(permutations 4)

=>

((0123) (1023) (0213 (2013) (1203 (2103) (0132)
(1032 (0312) (3012 (1302) (3102 (0231) (2031
(0321) (3021)(2301) (3201 (1230 (2130 (1320
(3120 (2310) (3210)

SYNOPSIS:

30

9 SC/PERMUTATIONS

(defun permutations (level)

9.1.1 permutations/inefficient-permutations

[permutations | [Functions |

ARGUMENTS:

An integer that indicates how many consecutive integers from O are to be
used for the process.

OPTIONAL ARGUMENTS:

keyword arguments:

- :max. An integer that indicates the maximum number of permutations to be
returned.

- :skip. An integer that indicates a number of permutations to skip.

- :fix. T or NIL to indicate whether the given sequence should always be
shuffled with the same (fixed) random seed (thus always producing the
same result). T = fixed seed. Default = T.

RETURN VALUE:

A list.

EXAMPLE:

;; Creating a shuffled, non-systematic list of all permutations of consecutive

;; integers 0 to 4
(inefficient-permutations 4)

=>((2301) (3120 (2031)(1023) (1230 ((231) (210 3)
(0123 (2310)(1203)(3012)@B102) (1320 (1032
(2013 (3210 (2130) (3201 (1302 (0213) (3021)

(0132 (0321) (0312)
;; Using O to 4 again, but limiting the number of results returned to a maximum
;3 of 7
(inefficient-permutations 4 :max 7)

=>((2301) (3120)(2031) (1023) (1230 (0231) (210 3))

;; The same call will return the same "random" results each time by default
(loop repeat 4 do (print (inefficient-permutations 3 :max 5)))

31

9 SC/PERMUTATIONS 32

=>

((201) (210 (021) (102 (120)
(201) (210 (021) (102 (120)
((201) (210 (021) (102 (120)
((201) (210 (021) (102 (120)

;; Setting the :fix argument to NIL will result in differnt returns
(loop repeat 4 do (print (inefficient-permutations 3 :max 5 :fix nil)))

=>

((102) (012 120 (210 (021))
(120 (201) (210 (102 (012)
((012) (102 (201) (120 (210N
((021) (120 (012) (201) (10 2)

SYNOPSIS:

(defun inefficient-permutations (level &key (max nil) (skip 0) (fix t))

9.1.2 permutations/inefficiently-permutate

[permutations | [Functions |

ARGUMENTS:
- A list.
OPTIONAL ARGUMENTS:

keyword arguments:

- :max. An integer that indicates the maximum number of permutations to be
returned.

- :skip. An integer that indicates a number of permutations to skip.

- :fix. T or NIL to indicate whether the given sequence should always be
shuffled with the same (fixed) random seed (thus always producing the
same result). T = fixed seed. Default = T.

- :sublists. T or NIL to indicate whether the returned result should be
flattened into a one-dimensional list or should be left as a list of
lists. T = leave as list of lists. Default = NIL.

RETURN VALUE:
A list.

EXAMPLE:

9 SC/PERMUTATIONS

;; By default the function returns a flattened list of all possible
;3 permutations in a shuffled (random) order
(inefficiently-permutate ’(a b c))

=> (CABCBAACBBACBCAABO

;; The length of the list returned can be potentially shortened using the :max
;5 keyword argument. Note here that the value given here refers to the number
;3 of permutations before the list is flattened, not to the number of

;3 individual items in the flattened list.

(inefficiently-permutate ’(a b c) :max 3)

=> (CABCBAACB)
;3 By default the function is set to using a fixed random seed, causing it to

;; return the same result each time
(loop repeat 4 do (print (inefficiently-permutate ’(a b c¢))))

(CABCBAACBBACBCAABD®)
(CABCBAACBBACBCAABDO
(CABCBAACBBACBCAABDO)
(CABCBAACBBACBCAABDO

;; Setting the :fix keyword argument to NIL allows the function to produce
;3 different output each time
(loop repeat 4 do (print (inefficiently-permutate ’(a b c¢) :fix nil)))

=>

(BACACBBCAABCCBACAB)
(ACBBACCBACABBCAABDO
(ACBBACBCAABCCABCBA
(BACABCCABCBABCAACDB)

;; Setting the :sublists keyword argument to T causes the function to return a
;; list of lists instead
(inefficiently-permutate ’(a b c) :sublists t)

=> ((CAB) (CBA) (ACB) (BAC) (BCA) (ABC)H
SYNOPSIS:

(defun inefficiently-permutate (list &key (max nil) (skip 0) (fix t)
(sublists nil))

33

9 SC/PERMUTATIONS

9.1.3 permutations/move-repeats

[permutations | [Functions |

ARGUMENTS:

- A list.

OPTIONAL ARGUMENTS:

- A function that serves as the comparison test. Default = #’eq.

RETURN VALUE:

A list.

EXAMPLE:

;55 Used with a list of lists. Note that the repeating C, end of sublist 1,
;3; beginning of sublist 2, is moved, not the whole repeating sublist (c a b).
(move-repeats ’((a b c) (cab) (cab) (de f) (abc) (gh i)))

=> ((ABC) DEF) (CAB) (CAB) (ABC) (GHI)

;55 Works with simple lists too:
(move-repeats (1 2334567 889 10))

=> (12343567898 10)
;; Moves the offending element to the end of the list and prints a warning when
;3 no solution can be found
(move-repeats ((abcd) (dcba (bcad (cabd)
=> ((ABCD) (BCAD) (CABD) (DCB A
WARNING:
move-repeats: can’t find non-repeating place!
present element: (D C B A), elements left: 1

SYNOPSIS:

(defun move-repeats (list &optional (test #’eq))

9.1.4 permutations/multi-shuffle

[permutations | [Functions |

ARGUMENTS:

34

9 SC/PERMUTATIONS

- A sequence.
OPTIONAL ARGUMENTS:

keyword arguments:

- :start. A zero-based index integer indicating the first element of a

subsequence to be shuffled. Default = 0.

:end. A zero-based index integer indicating the last element of a

subsequence to be shuffled. Default = the length of the given sequence.

- :copy. T or NIL to indicate whether the given sequence should be copied
before it is modified or should be destructively shuffled.

T = copy. Default = T.

- :fix. T or NIL to indicate whether the given sequence should always be
shuffled with the same (fixed) random seed (thus always producing the
same result). T = fixed seed. Default = T.

- :reset. T or NIL to indicate whether the random state should be reset
before the function is performed. T = reset. Default = T.

RETURN VALUE:
- A sequence.
EXAMPLE:

;5 Simple multi-shuffle with default keywords.
(multi-shuffle *(abcde f g) 3)

=> (BACEDGTF)

;5 Always returns the same result by default.
(loop repeat 4 do (print (multi-shuffle (abcde f g) 3)))

=>

(BACEDGF)
(BACEDGF)
(BACEDGF)
(BACEDGF)

;5 Set keyword argument :fix to NIL to return different results each time
(loop repeat 4 do (print (multi-shuffle ’(a b c d e f g) 3 :fix nil)))

35

9 SC/PERMUTATIONS

(GCADEFB)

;; Set keyword arguments :start and :end to shuffle just a subsequence of the
;3 given sequence
(loop repeat 4

do (print (multi-shuffle ’(abcde f g) 3

:fix nil
:start 2
tend 5)))

=>

(ABDECTF G

(ABECDTF G

(ABEDCTFG)

(ABDCEF G

SYNOPSIS:

(defun multi-shuffle (seq num-shuffles &key
(start 0)
(end (length seq))
(copy t)
(fix t)
(reset t))

9.1.5 permutations/multi-shuffle-with-perms

[permutations | [Functions |

ARGUMENTS:

- A list.
- An integer that is the number of permutations to be returned.

RETURN VALUE:

- A list that is a single permutation of the specified list.
EXAMPLE:

;3 Returns a random and unordered permutation of the specified list
(let ((1 °(0 123 4)))

(multi-shuffle-with-perms 1 7))

=> (31420)

36

9 SC/PERMUTATIONS

;5 Always returns the same result
(loop repeat 4 do (print (multi-shuffle-with-perms (0 1 2 3 4) 7)))

=>
3
3
(3
(3

e

Db D
NN NN

O O O O
~

;; Different <num-shuffles> values return different permutations
(loop for i from O to 5
do (print (multi-shuffle-with-perms (0 1 2 3 4) i)))

=>
(01234
(14203
(03142
(40213
(12340
(21304
SYNOPSIS:

(defun multi-shuffle-with-perms (seq num-shuffles)

9.1.6 permutations/permutate

[permutations | [Functions |
ARGUMENTS:

- A list with elements of any type.

RETURN VALUE:

A list of lists that are all possible permutations of the original,
specified list.

Interrupts with an error if the method is passed anything but a list.

EXAMPLE:

;; Simple usage
(permutate ’(a b ¢))

37

9 SC/PERMUTATIONS

=> ((ABC) (BAC) (ACB) (CAB) (BCA (CBA))

;; When the list is more than 8 elements long, the resulting permutations are
;; written to a file due to the very high number of results

(permutate (1 2 34567 8 9))

=>

WARNING: permutations::permutations: This call will return 362880

results so they are being written to the file
’/tmp/permutations.txt’.

SYNOPSIS:

(defun permutate (list)

9.1.7 permutations/random-rep

[permutations | [Functions |

FUNCTION:

Return a non-negative random number that is less than the specified
value. An optional argument allows for the random state to be reset.

ARGUMENTS:
- A number.
OPTIONAL ARGUMENTS:

- T or NIL to indicate whether the random state should be reset before the
function is performed. T = reset. Default = NIL.

RETURN VALUE:
A number.
EXAMPLE:

;3 By default returns a different value each time
(loop repeat 10 do (print (random-rep 5)))

=>

38

9 SC/PERMUTATIONS

ONONDP>WPdP>»PWE

;; Setting the optional argument to T resets the random state before
;3 performing the function
(loop repeat 10 do (print (random-rep 5 t)))

\"

W WWwwwwwwwow

SYNOPSIS:

(defun random-rep (below &optional (reset nil))

9.1.8 permutations/shuffle

[permutations | [Functions |
ARGUMENTS:

- A sequence (list, vector (string)).
OPTIONAL ARGUMENTS:

keyword arguments:

- :start. A zero-based index integer indicating the first element of a
subsequence to be shuffled. Default = O.

- :end. A zero-based index integer indicating the last element of a

39

9 SC/PERMUTATIONS

subsequence to be shuffled. Default = the length of the given sequence.

- :copy. T or NIL to indicate whether the given sequence should be copied
before it is modified or should be destructively shuffled.
T = copy. Default = T.

- :fix. T or NIL to indicate whether the given sequence should always be
shuffled with the same (fixed) random seed (thus always producing the
same result). T = fixed seed. Default = T.

- :reset. T or NIL to indicate whether the random state should be reset
before the function is performed. T = reset. Default = T.

RETURN VALUE:
A list.

EXAMPLE:

;; Simple shuffle with default keywords.
(shuffle (1 23456 7))

=> (6436712)

;5 Always returns the same result by default.
(loop repeat 4 do (print (shuffle (1 2 3 45 6 7))))

=>

(6436712)
(6436712)
(6436712)
(6436712)

;5 Set keyword argument :fix to NIL to return different results each time
(loop repeat 4 do (print (shuffle (1 2 3 4 5 6 7) :fix nil)))

=>

(1263547)
(1352746)
(472516 3)
(1537426)

;3 Set the keyword argument :reset to t only at the beginning so we get the
;; same result that time but different (but repeatable) results thereafter.
(loop repeat 3 do
(print ’start)
(loop for i below 4 do (print (shuffle (1 2 3 4 5 6 7) :reset (zerop
i)))))

40

9 SC/PERMUTATIONS

=>

START
(543
(465
(341
(327
START
(543
(4 65
(341
327
START
(543
(4 65
(341
(327

;; Set keyword arguments :start and :end to shuffle just a subsequence of the

2)
7
2)
5)

s oo
— oo w N
o N - e

2)
7
2)
5)

s oo
— oo w N
o N = e

2)
7)
2)
5)

s oo
— oo w
O N e

;3 given sequence
(loop repeat 4
do (print (shuffle (1 2 3 45 6 7)

=>
1
1
1
1

NN NN
WP wom

S oo
oW o W
oo oo
N~~~
N N T

SYNOPSIS:

:fix nil
:start 2
tend 5)))

(defun shuffle (seq &key

(start 0)

(end (length seq))

(copy t)

(fix t)

(reset t)

&aux (width (- end start)))

41

10 SC/SAMP5

10 sc/sampb

[Modules |
NAME:

sampb
File: samp5.1sp

Class Hierarchy: none, no classes defined

Version: 1.0.0-beta2
Project: slippery chicken (algorithmic composition)
Purpose: clm instrument for sample processing; called by

slippery-chicken: :clm-play
Author: Michael Edwards: m@michael-edwards.org
Creation date: 12th June 2004
$$ Last modified: 13:20:54 Sat Mar 20 2010 GMT

SVN ID: $Id: samp5.lsp 1982 2012-05-24 15:35:54Z medward2 $

11 sc/slippery-chicken-edit

[Modules |
NAME:

slippery-chicken-edit
File: slippery-chicken-edit.lsp

Class Hierarchy: mnamed-object -> slippery-chicken

Version: 1.0.0-beta2
Project: slippery chicken (algorithmic composition)
Purpose: Post-generation editing methods for the slippery-chicken

class. NB only include methods here that the user should

11 SC/SLIPPERY-CHICKEN-EDIT

access (i.e. no -aux methods) as all of these will be
automatically listed and linked on a manual page. Also,
in order for these links to work we need
*x*x*+xm* slippery-chicken-edit/replace-tempo-map
not
*x*x*+xm* slippery-chicken/replace-tempo-map

Author: Michael Edwards: m@michael-edwards.org

Creation date: April 7th 2012

$$ Last modified: 19:03:20 Tue May 8 2012 BST

SVN ID: $Id: slippery-chicken-edit.lsp 1367 2012-04-06 22:15:32Z medward2 $

11.1 slippery-chicken-edit /add-arrow-to-events

[slippery-chicken-edit | [Methods |
DATE:

April 9th 2012

DESCRIPTION

Adds an arrow above the specified notes of a slippery-chicken object,
coupled with text to be printed in the score at the start and end of the
arrow. Can be used, for example, for transitions from one playing state to
another.

If no text is desired, this must be indicated by a space in quotes (" ")
rather than empty quotes ("").

See also the add-arrow method in the event class.

ARGUMENTS:

A slippery-chicken object.

- A text string for the beginning of the arrow.

- A text string for the end of the arrow.

A list that is the starting event reference, in the form (bar-number

event-number) . Event numbers count from 1 and include rests and tied

notes.

- A list that is the end event reference, in the form (bar-number
event-number) .

- The ID of the player to whose part the arrow should be attached.

43

11 SC/SLIPPERY-CHICKEN-EDIT 44

OPTIONAL ARGUMENTS:

- T or NIL to indicate whether or not to print a warning when trying to
attach an arrow and accompanying marks to a rest.
T = print warning. Default = NIL.

RETURN VALUE:
T
EXAMPLE:

(let ((mini
(make-slippery-chicken
’+mini+
:title "mini"
:ensemble ’(((pno (piano :midi-channel 1))))
:tempo-map ’((1 (q 60)))
:set-palette ’((1 ((c4 d4 f4 g4 a4 c5 d5 f5 gb ab c6)))
(2 ((cs4 ds4 fs4 gs4 as4d csb dsb fsb gsb asb))))
;set-map ((1 (11111 1)))
:rthm-seq-palette ’((1 ((((2 4) q @))
:pitch-seq-palette ((1 (2))))))
:rthm-seq-map ’((1 ((pno (1 1 1 1 1 1))))N))
(add-arrow-to-events mini "here" "there" ’(1 1) ’(5 1) ’pno)
(write-lp-data-for-all mini))

SYNOPSIS:

(defmethod add-arrow-to-events ((sc slippery-chicken) start-text end-text
eventl-ref event2-ref player
&optional warn-rest)

11.2 slippery-chicken-edit /add-clef

[slippery-chicken-edit | [Methods |
ARGUMENTS:

- A slippery-chicken object.
- The ID of the player to whose part the clef symbol is to be added.

NB: The optional arguments are actually required.

OPTIONAL ARGUMENTS:

11 SC/SLIPPERY-CHICKEN-EDIT

- An integer that is the bar number in which the clef symbol is to be
placed.

- An integer that is the event number within the given bar to which the
clef symbol is to be attached.

- A symbol that is the clef type to be attached. See the documentation for
the make-instrument function of the instrument class for a list of
possible clef types.

RETURN VALUE:
Returns the new value of the MARKS-BEFORE slot of the given event object.
EXAMPLE:

(let ((mini

(make-slippery-chicken

’+mini+

:title "mini"

:ensemble ’(((vn (violin :midi-channel 1))))

:tempo-map ’((1 (q 60)))

:set-palette ’((1 ((c4 d4 f4 g4 a4 c5 d5 f5 gb ab c6)))

(2 ((cs4 ds4 fs4 gs4 as4d csb dsb fsb gsb asb))))

:set-map *((1 (1 1111 1))

:rthm-seq-palette > ((1 ((((2 4) q e s 8))

:pitch-seq-palette ((1 2 3 4)))))
:rthm-seq-map *((1 ((vn (1 11 1 1 1NN
(add-clef mini ’vn 3 2 ’alto))

=> ((CLEF ALTO))

SYNOPSIS:

(defmethod add-clef ((sc slippery-chicken) player &optional
bar-num event-num clef)

11.3 slippery-chicken-edit /add-event-to-bar

[slippery-chicken-edit | [Methods |
ARGUMENTS:

- A slippery-chicken object.

- An event object.

- An integer that is the bar number or a list that is the reference to the
bar in the form ’(section sequence bar), where sequence and bar are

45

11 SC/SLIPPERY-CHICKEN-EDIT

numbers counting from 1)
- The ID of the player to whose part the event should be added.

OPTIONAL ARGUMENTS:

keyword argument:

- :position. NIL or an integer indicating the position in the bar (0O-based)
where the event should be added. If NIL, the new event is place at the
end of the bar. Default = NIL.

RETURN VALUE:
T

EXAMPLE:

;55 Adding two events to separate bars, once using a bar number with
;35 :position’s default to NIL, and once using a bar number reference list with
;55 :position specified as 2. Print the bars after adding to see the changes.

(let ((mini
(make-slippery-chicken
’+mini+
:ensemble ’(((vn (violin :midi-channel 1))))
:tempo-map ’((1 (q 60)))
:set-palette ’((1 ((c4 d4 f4 g4 a4 c5 d5 f5 gb ab c6)))
(2 ((cs4 ds4 fs4 gs4 as4d csb dsb fsb gsb asb ¢s6))))
:set-map *((1 (1 1111 1))
(2 (222222))
:rthm-seq-palette *((1 ((((2 4) q e s 8))
:pitch-seq-palette ((1 2 3 4))))
(2 ((((24) essq)
:pitch-seq-palette ((1 2 3 4)))))
:rthm-seq-map ’((1 ((vn (1 1111 1))))
(2 (vn (2222220
(add-event-to-bar mini (make-event ’cs4 ’e) 2 ’vn)
(print-simple (first (get-bar mini 2)))
(add-event-to-bar mini (make-event ’c4 ’q) ’(2 2 1) ’vn :position 2)
(print-simple (first (get-bar mini ’(2 2 1)))))

=>

(24): C4Q, DA E, F4 S, G4 S, CS4 E
(2 4): CS4 E, DS4 S, C4 Q, FS4 S, GS4 Q

SYNOPSIS:

11

(defmethod add-event-to-bar ((sc slippery-chicken) event bar-num-or-ref player

11

SC/SLIPPERY-CHICKEN-EDIT

&key (position nil))

.4 slippery-chicken-edit /add-mark-all-players

[slippery-chicken-edit | [Methods |
ARGUMENTS:

A slippery-chicken object.

An integer that is the bar number or a list of integers that is a
reference to the bar number in the form (section sequence bar).

An integer that is the event to which to attach the specified mark in all
parts, or a list of integers that are the individual events to which to
attach the mark in the consecutive players.

The mark to be added.

RETURN VALUE:

Always returns T.

EXAMPLE:

39

; Apply the method twice: Once using an integer to attach the mark to the
; same event in all players, and once using a list to attach the mark to
; different events in the consecutive players. Print the corresponding marks

slots to see the results.

(let ((mini

(make-slippery-chicken
’+mini+
:ensemble ’(((cl (b-flat-clarinet :midi-channel 1))
(hn (french-horn :midi-channel 2))
(vc (cello :midi-channel 3))))
:tempo-map ’((1 (q 60)))
:set-palette *((1 ((£f3 g3 a3 b3 c4 d4 e4 f4 g4 a4 b4 c5))))
:set-map *((1 (1 111 1))
2 @111 0N
:rthm-seq-palette *((1 ((((4 4) h q e s s8))
:pitch-seq-palette ((1 2 3 4 5)))))
:rthm-seq-map ’((1 ((cl (1 11 1 1))

(hn (1111 1))
(ve (1111 1))
(2 (1 (1 1111)
(hn (1111 1))
(ve (1111 1)MDNN

11 SC/SLIPPERY-CHICKEN-EDIT

(add-mark-all-players mini 3 1 ’ppp)
(add-mark-all-players mini °(2 2 1) ’(1 2 3) ’fff)
(loop for i in ’(cl hn vc)

do (print (marks (get-event mini 3 1 i))))
(loop for i in ’(cl hn vc)

for e in (1 2 3)

do (print (marks (get-event mini ’(2 2 1) e i)))))

=>

(PPP)
(PPP)
(PPP)
(FFF)
(FFF)
(FFF)

SYNOPSIS:

(defmethod add-mark-all-players ((sc slippery-chicken)
bar-num event-num mark)

11.5 slippery-chicken-edit /add-mark-before-note

[slippery-chicken-edit | [Methods |
ARGUMENTS:

- A slippery-chicken object.

- An integer that is the bar number in which the mark is to be added.

An integer that is the NOTE number to which the mark is to be added (not
the event number; i.e., rests are not counted).

The ID of the player to which the mark is to be added.

- The mark to be added.

RETURN VALUE:
Returns the new value of the MARKS-BEFORE slot of the given event object.
EXAMPLE:

;35 The method adds the mark to the specified note, not event. Add the mark to
;3; note 2, print the MARKS-BEFORE slots of events 2 (which is a rest) and 3.
(let ((mini

(make-slippery-chicken

’+mini+

48

11 SC/SLIPPERY-CHICKEN-EDIT

:ensemble ’(((vn (violin :midi-channel 1))))
:tempo-map ’((1 (q 60)))
:set-palette > ((1 ((c4 d4 f4 g4 a4 c5 d5 £5 gb ab c6))))
:set-map *((1 (1 1111 1))
:rthm-seq-palette ’((1 ((((2 4) q (e) s s))
:pitch-seq-palette ((1 2 3)))))
:rthm-segq-map ’((1 ((vn (1 1111 1))))))))
(add-mark-before-note mini 3 2 ’vn ’ppp)
(print (marks-before (get-event mini 3 2 ’vn)))
(print (marks-before (get-event mini 3 3 ’vn))))

=>
NIL
(PPP)

SYNOPSIS:

(defmethod add-mark-before-note ((sc slippery-chicken)
bar-num note-num player mark)

11.6 slippery-chicken-edit /add-mark-to-event

[slippery-chicken-edit | [Methods |
ARGUMENTS:

- A slippery-chicken object.

- An integer that is the bar number to which the mark is to be added.

- An integer that is the event number in the specified bar to which the
mark is to be added.

The ID of the player to which to add the mark.

The mark to add.

RETURN VALUE:
Returns T.
EXAMPLE:

;;; Add a mark to an event object then read the value of the MARKS slot of that
;53 event to see the result
(let ((mini
(make-slippery-chicken
’+mini+
:ensemble ’(((vn (violin :midi-channel 1))))

49

11 SC/SLIPPERY-CHICKEN-EDIT 50

:tempo-map ’((1 (q 60)))
:set-palette ’((1 ((c4 d4 f4 g4 a4 c5 d5 f5 gb ab c6))))
:set-map *((1 (1 1111 1))
:rthm-seq-palette ’((1 ((((2 4) q (e) s s))
:pitch-seq-palette ((1 2 3)))))
:rthm-seq-map *((1 ((vn (1 11 1 1 1))))N))
(add-mark-to-event mini 3 2 ’vn ’ppp)
(marks (get-event mini 3 2 ’vn)))

=> (PPP)

SYNOPSIS:

(defmethod add-mark-to-event ((sc slippery-chicken) bar-num event-num player
mark)

11.7 slippery-chicken-edit /add-mark-to-note

[slippery-chicken-edit | [Methods |
ARGUMENTS:

- A slippery-chicken object.

- An integer that is the bar number to which to add the mark

An integer that is the note number two which to add the mark. This is
1-based, and counts notes not events; i.e., not rests.

The ID of the player to whose part the mark is to be added.

The mark to add.

RETURN VALUE:
Returns T.
EXAMPLE:

;55 Add a mark to a note in a bar with a rest. Print the corresponding event
;53 object to see the result.
(let ((mini
(make-slippery-chicken
’+mini+
:ensemble ’(((vn (violin :midi-channel 1))))
:tempo-map ’((1 (q 60)))
:set-palette ’((1 ((c4 d4 f4 g4 a4 c5 d5 f5 gb ab c6))))
:set-map *((1 (11111 1))
:rthm-seq-palette ’((1 ((((2 4) q (e) s s))

11 SC/SLIPPERY-CHICKEN-EDIT

:pitch-seq-palette ((1 2 3)))))
:rthm-seq-map ’((1 ((vn (1 1111 1))))))))
(add-mark-to-note mini 3 2 ’vn ’ppp)
(print (marks (get-event mini 3 2 ’vn)))
(print (marks (get-event mini 3 3 ’vn))))

=>
NIL

(PPP)
SYNOPSIS:

(defmethod add-mark-to-note ((sc slippery-chicken)
bar-num note-num player mark)

11.8 slippery-chicken-edit /add-marks-sh

[slippery-chicken-edit | [Methods |
DATE:

27-Jun-2011

DESCRIPTION

Add marks in a somewhat more free list form, with the option of
implementing a user-defined shorthand.

ARGUMENTS:

- A slippery-chicken object.

- A list of lists containing the players, bar and note refs, and marks to
be added. The first element of each contained list will be the ID of the
player to whose part the marks are to be added followed by a pattern of
<mark bar-number note-number> triplets, or if a mark is to be added
repeatedly then <mark bar note bar note... >. A mark can be a string or a

symbol.
OPTIONAL ARGUMENTS:

keyword arguments:

- For marks given as symbols, the user can supply a shorthand table that
will expand an abbreviation, such as sp, to the full mark name, such as
short-pause. This table takes the form of a simple Lisp association list,

e.g.: ’((al aeolian-light)
(ad aeolian-dark)

51

11 SC/SLIPPERY-CHICKEN-EDIT

(wt "WT")
(h harm))
- :warn. T or NIL to indicate whether to print a warning for unrecognized
marks. T = print warning. Default = T.
- :verbose. T or NIL to indicate whether the method is to print verbose
feedback about each mark added to the Listener. T = print feedback.
Default = NIL.

RETURN VALUE:
Returns NIL.
EXAMPLE:

(let ((mini
(make-slippery-chicken
’+mini+
:ensemble ’(((vn (violin :midi-channel 1))
(va (viola :midi-channel 2))))
:tempo-map ’((1 (q 60)))
:set-palette ’((1 ((c4 d4 f4 g4 a4 c5 d5 £5))))
:set-map *((1 (1 1111 1))
:rthm-seq-palette ((1 ((((4 4) e e e ec e e e e))
:pitch-seq-palette ((1 2 3456 7 8)))))
:rthm-seq-map ’((1 ((vn (1 1111 1))
(va (11111 1))
(add-marks-sh mini
’((vna111231s8212225)
(va pizz 1 3 2 3 sp 3 1))
:shorthand ’((sp short-pause))
:verbose t))

=> NIL
SYNOPSIS:

(defmethod add-marks-sh ((sc slippery-chicken) player-data
&key shorthand (warn t) verbose)

11.9 slippery-chicken-edit/add-marks-to-note

[slippery-chicken-edit | [Methods |
ARGUMENTS:

52

11 SC/SLIPPERY-CHICKEN-EDIT 53

- A slippery-chicken object.

- An integer that is the bar number to which the mark or marks should to be
added.

- An integer that is the note within the specified bar to which the mark or
marks should be added.

- The ID of the player to whose part the mark or marks should be added.

- The mark or marks to add.

RETURN VALUE:
Returns T.

EXAMPLE:

;53 Add several marks to one note, then print the corresponding MARKS slot to
;33 see the difference.
(let ((mini
(make-slippery-chicken
’+mini+
:ensemble ’(((vn (violin :midi-channel 1))
(va (viola :midi-channel 2))))
:tempo-map ’((1 (q 60)))
:set-palette > ((1 ((c4 d4 f4 g4 a4 c5 d5 £5))))
:set-map *((1 (1 1111 1))
:rthm-seqg-palette *((1 ((((4 4) e (e) e e (e) e e e))
:pitch-seq-palette ((1 2 3 4 5 6)))))
:rthm-segq-map ’((1 ((vn (1 1111 1))
(va (1111113
(add-marks-to-note mini 2 3 ’va ’a ’s ’lhp ’pizz)
(print (marks (get-note mini 2 3 ’va))))

=> (PIZZ LHP S A)

SYNOPSIS:

(defmethod add-marks-to-note ((sc slippery-chicken) bar-num note-num
player &rest marks)

11.10 slippery-chicken-edit/add-marks-to-notes

[slippery-chicken-edit | [Methods |
ARGUMENTS:

- A slippery-chicken object.

11 SC/SLIPPERY-CHICKEN-EDIT

- An integer or a list consisting of two numbers to indicate the start
bar/note. If this is an integer, all notes in this bar will receive the
specified mark or marks. If this is a two—number list, the first number
determines the bar, the second the note within that bar.

- An integer or a list consisting of two numbers to indicate the end
bar/note. If this is an integer, all notes in this bar will receive the
specified mark or marks. If this is a two—number list, the first number
determines the bar, the second the note within that bar.

- The ID of the player or players to whose parts the mark or marks should
be attached. This can be a single symbol or a list.

- T or NIL to indicate whether the mark should be added to the MARKS slot
or the MARKS-BEFORE slot of the given events objects.

- The mark or marks to be added.

RETURN VALUE:
Returns T.

EXAMPLE:

;55 This example calls the method twice: Once using the single-integer
;55 indication for full bars, with one instrument and one mark; and once using
;33 the bar/mote reference lists for more specific placement, a list of several
;55 players that should all receive the marks, and multiple marks to add.
(let ((mini
(make-slippery-chicken
’+mini+
:ensemble ’(((vn (violin :midi-channel 1))
(va (viola :midi-channel 2))))
:tempo-map ’((1 (q 60)))
:set-palette ’((1 ((c4 d4 f4 g4 a4 c5 d5 £5))))
tset-map *((1 (1 1111 1)))
:rthm-seq-palette "((1 ((((4 4) eeeceec e e e))
:pitch-seq-palette ((1 2 3456 7 8)))))
:rthm-seq-map ’((1 ((vn (1 1111 1))
(va (11111 1O0NN
(add-marks-to-notes mini 2 3 ’vn nil ’1lhp)
(add-marks-to-notes mini (1 3) ’(2 2) ’(vn va) nil ’s ’a))

=T
SYNOPSIS:

(defmethod add-marks-to-notes ((sc slippery-chicken) start end players before
&rest marks)

11 SC/SLIPPERY-CHICKEN-EDIT 55

11.11 slippery-chicken-edit /add-tuplet-bracket-to-bar

[slippery-chicken-edit | [Methods |

ARGUMENTS: OPTIONAL ARGUMENTS: RETURN VALUE: EXAMPLE: SYN-
OPSIS:

(defmethod add-tuplet-bracket-to-bar ((sc slippery-chicken) bar-num player
bracket-info
&optional (delete-all-tuplets-first nil))

11.12 slippery-chicken-edit /add-tuplet-brackets-to-beats

[slippery-chicken-edit | [Methods |

ARGUMENTS: OPTIONAL ARGUMENTS: RETURN VALUE: EXAMPLE: SYN-
OPSIS:

(defmethod add-tuplet-brackets-to-beats

((sc slippery-chicken) player bracket-info
&optional (delete-all-tuplets-first nil))

11.13 slippery-chicken-edit/auto-accidentals

[slippery-chicken-edit | [Methods |
ARGUMENTS:

- A slippery-chicken object.
OPTIONAL ARGUMENTS:

- An integer that is the number of notes back to look when placing
cautionary accidentals in parentheses. If the last occurrence of a given
repeated note/accidental combination was farther back than this number,
the accidental will be placed in the score in parentheses.

RETURN VALUE:

Returns NIL.

EXAMPLE:

(let ((mini
(make-slippery-chicken

11 SC/SLIPPERY-CHICKEN-EDIT

’+mini+
:ensemble ’(((vn (violin :midi-channel 1))))
:set-palette ’((1 ((fs4 gs4 as4))))
:set-map *((1 (1 11 1)))
:rthm-seq-palette ((1 ((((4 4) e e e e e e e e))
:pitch-seq-palette ((1 2321 2 3 2)))))
:rthm-seq-map ’((1 ((vn (1 1 1 1))))))))
(auto-accidentals mini 4)
(cmn-display mini :respell-notes nil))

=> NIL
SYNOPSIS:

(defmethod auto-accidentals ((sc slippery-chicken) &optional
(cautionary-distance 3)
ignorel ignore2)

11.14 slippery-chicken-edit/auto-beam

[slippery-chicken-edit | [Methods |
ARGUMENTS:

- A slippery-chicken object.
OPTIONAL ARGUMENTS:

- NIL, an integer that is a power-of-two rhythmic duration, or the
alphabetic representation of such a rhythm to specify the beat basis for
setting beams (e.g. 4 or ’h).

- T or NIL to indicate whether the method is to check whether an exact beat
of rhythms can be found for each beat of the bar. If T, a warning will be
printed when an exact beat cannot be found for each beat of the bar.
Default = T.

RETURN VALUE:
Returns NIL.

EXAMPLE:

;5 Auto-beam the events of the given slippery-chicken object on the basis of a

;3 half note:
(let ((mini

56

11 SC/SLIPPERY-CHICKEN-EDIT

(make-slippery-chicken

’+mini+

:ensemble ’(((vn (violin :midi-channel 1))))

:tempo-map ’((1 (q 60)))

:set-palette ’((1 ((fs4 gs4 as4))))

rset-map *((1 (1 11 1)))

:rthm-seq-palette ((1 ((((4 4) e e e e e e e e))

:pitch-seq-palette ((1 2 321 2 3 2)))))
:rthm-seq-map *((1 ((vn (1 1 1 1))))))))
(auto-beam mini ’h))

=> NIL

SYNOPSIS:

(defmethod auto-beam ((sc slippery-chicken) &optional (beat nil) (check-dur t))

11.15 slippery-chicken-edit/auto-clefs

[slippery-chicken-edit | [Methods |
ARGUMENTS:

- A slippery-chicken object.
OPTIONAL ARGUMENTS:

keyword arguments:

- :verbose. T or NIL to indicate whether the method is to print feedback
about its operations to the Listener. T = print feedback. Default = NIL.

- :in-c. T or NIL to indicate whether the pitches processed are to be
handled as sounding or written pitches. T = sounding. Default = T.

- :players. A list containing the IDs of the players whose parts are to be
to have clefs automatically added.

- :delete-clefs. T or NIL to indicate whether the method should first
delete all clef symbols from the MARKS-BEFORE slots of all event objects
it is processing before setting the automatic clef changes.

- :delete-marks-before. T or NIL to indicate whether the MARKS-BEFORE slot
of all event objects processed should first be set to NIL.

T = set to NIL. Default = NIL.

RETURN VALUE:

Returns NIL

o7

11 SC/SLIPPERY-CHICKEN-EDIT 58

EXAMPLE:

;55 Straightforward usage applied to just the VC player
(let ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((vn (violin :midi-channel 1))

(vc (cello :midi-channel 2))))

:tempo-map ’((1 (q 60)))

:set-palette > ((1 ((c2 e2 d4 e4 f4 g4 a4 £5))))

:set-map *((1 (1 11 1)))

:rthm-seq-palette ((1 ((((4 4) e e e e e e e e))

:pitch-seq-palette ((1 2 3456 7 8)))))
:rthm-seq-map ’((1 ((vn (1 1 1 1))
(ve (1 111N

(auto-clefs mini :players ’(vc)))

=> NIL
SYNOPSIS:

(defmethod auto-clefs ((sc slippery-chicken)

&key verbose in-c players
(delete-clefs t)
(delete-marks-before nil))

11.16 slippery-chicken-edit/auto-slur

[slippery-chicken-edit | [Methods |

ARGUMENTS: OPTIONAL ARGUMENTS: RETURN VALUE: EXAMPLE: SYN-
OPSIS:

(defmethod auto-slur ((sc slippery-chicken) players
&key start-bar end-bar
rm-slurs-first
(rm-staccatos t)

;; 5.4.11
(over-accents t)
verbose)

11.17 slippery-chicken-edit/change-pitch

[slippery-chicken-edit | [Methods |

11

SC/SLIPPERY-CHICKEN-EDIT

ARGUMENTS:

A slippery-chicken object.

An integer that is the bar number in which the pitch is to be changed.
An integer that is the number of the note in the specified bar whose
pitch is to be changed.

The ID of the player for whom the pitch is to be changed.

A note-name symbol that is the new pitch.

RETURN VALUE:

Returns T.

EXAMPLE:

(let ((mini

=>

(make-slippery-chicken

’+mini+

:ensemble ’(((vc (cello :midi-channel 1))))

:tempo-map ’((1 (q 60)))

:set-palette ’((1 ((d3 e3 £3 g3 a3 b3 c4 e4))))

:set-map ((1 (1 11 1)))

:rthm-seq-palette *((1 ((((4 4) e e e e e e e e))

:pitch-seq-palette ((1 2 3456 7 8)))))
:rthm-seq-map ’((1 ((ve (1 1 1 1))))))))
(change-pitch mini 1 3 ’vc ’£s3))

T

SYNOPSIS:

(defmethod change-pitch ((sc slippery-chicken) bar-num note-num player

new-pitch)

11.18 slippery-chicken-edit/change-pitches

[slippery-chicken-edit | [Methods |
ARGUMENTS:

A slippery-chicken object.

The ID of the player whose part is to be modified.

An integer that is the number of the first bar whose pitches are to be
modified.

A list note-name symbols and NILs, or a list of lists of note-name

59

11 SC/SLIPPERY-CHICKEN-EDIT

symbols and NILs, which are the new pitches. If a simple flat list, see
the comment in the function description above. If a list of lists, each
sub-list will represent a full bar; e.g., (change-pitches bh ’vla 5 ’((g3
gs4) nil (nil nil aqf5))) will change the pitches in bars 5 and 7 (for
the player ’vla), whereas bar six, indicated by nil, wouldn’t be changed;
similarly the first two notes of bar 7, being nil, will also not be
changed, but note 3 will.

OPTIONAL ARGUMENTS:

- T or NIL to indicate whether or not each consecutive new pitch listed
will automatically take the most recent octave number specified;
e.g. ’((a3 b g cs4)). T = use last octave number. Default = T.

- A list of marks to be added to the events objects. This option can only
be used in conjunction with the simple flat list of pitches. In this case
the list of pitches and list of marks must be the same length and
correspond to each other item by item. Sub-lists can be used to add
several marks to a single event. NB: See cmn.lsp::get-cmn-marks for the
list of recognised marks. If NIL, no marks will be added. Default = NIL.

RETURN VALUE:

If a the new pitches are passed as a simple flat list, the method returns
the number of the bar in which the pitches were changed;
otherwise returns T.

EXAMPLE:

(let ((mini
(make-slippery-chicken
’+mini+
:ensemble ’(((vc (cello :midi-channel 1))))
:tempo-map ’((1 (q 60)))
:set-palette ’((1 ((d3 e3 £3 g3 a3 b3 c4 e4))))
:set-map *((1 (1 1111 1))
:rthm-seq-palette ((1 ((((4 4) e e e ec e e e e))
:pitch-seq-palette ((1 2 3456 7 8)))))
:rthm-seq-map ’((1 ((ve (1 11 11 1))))NN
(change-pitches mini ’vc 2 ’((fs3 gs3 as3)))
(change-pitches mini ’vc 3 ’((nil nil fs3 gs as ds fs gs)
nil
(cs4 ds £s))))

=> T

SYNOPSIS:

11 SC/SLIPPERY-CHICKEN-EDIT 61

(defmethod change-pitches ((sc slippery-chicken) player start-bar new-pitches
&optional (use-last-octave t) marks)

11.19 slippery-chicken-edit /change-time-sig

[slippery-chicken-edit | [Methods |
ARGUMENTS:

- A slippery-chicken object.

- An integer that is the number of the bar whose time signature should be
changed or a list that is a reference to the bar whose time signature is
to be changed in the format (section sequence bar).

- The new signature in the format (number-of-beats beat-unit).

RETURN VALUE:
Returns T.

EXAMPLE:

;55 Changing two time signatures; once using the integer bar reference, the
;;; second time using the list reference to the bar number.
(let ((mini
(make-slippery-chicken
’+mini+
:ensemble ’(((vc (cello :midi-channel 1))))
:tempo-map ’((1 (q 60)))
:set-palette ’((1 ((d3 e3 £3 g3 a3 b3 c4 e4))))
:set-map ((1 (1 11 1)))
:rthm-seq-palette ((1 ((((4 4) e e e ec e e e e))
:pitch-seq-palette ((1 2 3456 7 8)))))
:rthm-seq-map ’((1 ((ve (1 1 1 1))))))))
(change-time-sig mini 2 ’(3 8))
(change-time-sig mini (1 1 1) °(5 8)))

=T
SYNOPSIS:

(defmethod change-time-sig ((sc slippery-chicken) bar-num-or-ref new-time-sig)

11.20 slippery-chicken-edit/delete-bars

[slippery-chicken-edit | [Methods |

11 SC/SLIPPERY-CHICKEN-EDIT 62

ARGUMENTS:

- A slippery-chicken object.
- An integer that is the first bar to delete.

OPTIONAL ARGUMENTS:

keyword arguments:
- :num-bars. An integer that is the number of consecutive bars, including

the start-bar, to delete. This argument cannot be used simultaneously
with :end-bar

- :end-bar. An integer that is the number of the last of the consecutive

bars to delete. This argument cannot be used simultaneously with
:num-bars.

- :print. Print feedback of the process to the Listener, including a
print-simple of the bars deleted.

RETURN VALUE:
Returns T.
EXAMPLE:

(let ((mini
(make-slippery-chicken
’+mini+
:ensemble ’(((vc (cello :midi-channel 1))))
:tempo-map ’((1 (q 60)))
:set-palette ’((1 ((d3 e3 £3 g3 a3 b3 c4 e4))))
:set-map *((1 (1 11 1)))
:rthm-seq-palette ((1 ((((4 4) e e e e e e e e))
:pitch-seq-palette ((1 2 3456 7 8)))))

:rthm-seq-map ’((1 ((ve (1 1 1 1))))))))

(delete-bars mini 2 :end-bar 3)

(delete-bars mini 2 :num-bars 1))

=T
SYNOPSIS:

(defmethod delete-bars ((sc slippery-chicken) start-bar
&key num-bars end-bar print)

11.21 slippery-chicken-edit/delete-clefs

[slippery-chicken-edit | [Methods |

11 SC/SLIPPERY-CHICKEN-EDIT

ARGUMENTS:

NB: The optional arguments are actually required.

- A slippery-chicken object.

- The ID of the player from whose part the clef symbol is to be deleted.

- An integer that is the number of the bar from which the clef symbol is to
be deleted.

- An integer that is the number of the event object within the specified
from whose MARKS-BEFORE slot the clef symbol is to be deleted. This is a
1-based index but counts rests and ties.

RETURN VALUE:
Returns NIL.
EXAMPLE:

(let ((mini
(make-slippery-chicken
’+mini+
:ensemble ’(((vc (cello :midi-channel 1))))
:tempo-map ’((1 (q 60)))
:set-palette *((1 ((c2 e2 d4 e4 f4 g4 a4 £5))))
:set-map *((1 (1 11 1)))
:rthm-seq-palette ((1 ((((4 4) e e e e e e e e))
:pitch-seq-palette ((1 2 3456 7 8)))))

:rthm-seq-map ’((1 ((ve (1 1 1 1))))))))

(auto-clefs mini)

(delete-clefs mini ’vc 1 3))

=> NIL
SYNOPSIS:

(defmethod delete-clefs ((sc slippery-chicken) &optional
player bar-num event-num)

11.22 slippery-chicken-edit /delete-events

[slippery-chicken-edit | [Methods |
DATE:

21-Jul-2011 (Pula)

63

11 SC/SLIPPERY-CHICKEN-EDIT

DESCRIPTION
Turn notes into rests by setting the IS-REST slots of the specified
consecutive event objects within the given slippery-chicken object to T.

ARGUMENTS:

- A slippery-chicken object.

- An integer that is the number of the first bar for which the notes are to
be changed to rests.

- An integer that is the index of the first event object within the
specified start bar for which the IS-REST slot is to be changed to
T. This number is 1-based and counts rests and ties.

- An integer that is the number of the last bar for which the notes are to
be changed to rests.

- An integer that is the index of the last event object within the
specified end bar for which the IS-REST slot is to be changed to T. This
number is 1-based and counts rests and ties. If NIL, apply the change to
all events in the given bar.

OPTIONAL ARGUMENTS:

- A list of the IDs of the players whose parts are to be modified. If NIL,
apply the method to the parts of all players.

- T or NIL to indicate whether to consolidate resulting consecutive rests
into one longer rest each. T = consolidate. Default = T.

RETURN VALUE:
Returns T.
EXAMPLE:

(let ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((vc (cello :midi-channel 1))))
:tempo-map ’((1 (q 60)))

:set-palette ’((1 ((c2 e2 d4 e4 f4 g4 a4 £5))))
:set-map ((1 (1 11 1)))

:rthm-seq-palette ((1 ((((4 4) e e e ec e e e e))

:pitch-seq-palette ((1 2 3456 7 8)))))
:rthm-seq-map ’((1 ((ve (1 1 1 1))))))))
(delete-events mini 2 2 3 nil ’vc))

=> T

64

11 SC/SLIPPERY-CHICKEN-EDIT 65

SYNOPSIS:

(defmethod delete-events ((sc slippery-chicken) start-bar start-event end-bar
end-event &optional players (consolidate-rests t))

11.23 slippery-chicken-edit/delete-rehearsal-letter

[slippery-chicken-edit | [Methods |
ARGUMENTS:

- A slippery-chicken object.

- An integer that is the number of the bar from which the rehearsal letter
is to be deleted. NB: The rehearsal letter for a given bar is internally
actually attached to the previous bar. The number given here is the
number from the user’s perspective, but the change will be reflected in
the bar with the number specified -1.

OPTIONAL ARGUMENTS:

- A list consisting of the IDs of the players from whose parts the
rehearsal letter is to be deleted.

RETURN VALUE:
Returns NIL.
EXAMPLE:

(let ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((vc (cello :midi-channel 1))))
:tempo-map ’((1 (q 60)))

:set-palette ’((1 ((c2 e2 d4 e4 f4 g4 a4 £5))))
:set-map *((1 (1 1111 1))

:rthm-seq-palette ((1 ((((4 4) e e e e e e e e))

:pitch-seq-palette ((1 2 3456 7 8)))))
:rthm-seq-map ’((1 ((ve (1 1111 1)))))
:rehearsal-letters (2 4 6))))
(delete-rehearsal-letter mini 2 ’(vc)))

=> NIL

SYNOPSIS:

11 SC/SLIPPERY-CHICKEN-EDIT

(defmethod delete-rehearsal-letter ((sc slippery-chicken) bar-num
&optional players)

11.24 slippery-chicken-edit/delete-slur

[slippery-chicken-edit | [Methods |
ARGUMENTS:

- A slippery-chicken object.

- An integer that is the number of the bar from which the slur is to be
deleted.

- An integer that is the number of the note on which the slur to be deleted
starts within the given bar. This number counts tied-notes but not
rests.

- The ID of the player from whose part the slur is to be deleted.

RETURN VALUE:
Returns NIL.
EXAMPLE:

(let ((mini
(make-slippery-chicken
’+mini+
:ensemble ’(((vc (cello :midi-channel 1))))
:tempo-map ’((1 (q 60)))
:set-palette *((1 ((c2 e2 d4 e4 f4 g4 a4 £5))))
:set-map *((1 (1 1111 1))
:rthm-seq-palette ((1 ((((4 4) e e e e e e e e))
:pitch-seq-palette ((1 2 3 45 6 7 8))
:marks (slur 1 8))))
:rthm-seq-map ’((1 ((ve (1 1111 1))))))))
(delete-slur mini 1 1 ’vc)
(delete-slur mini 3 1 ’vc))

=> NIL
SYNOPSIS:

(defmethod delete-slur ((sc slippery-chicken) bar-num note-num player)

66

11

SC/SLIPPERY-CHICKEN-EDIT 67

11.25 slippery-chicken-edit/double-events

[slippery-chicken-edit | [Methods |
DATE:

20-Jul-2011 (Pula)

DESCRIPTION

Copy the specified events from one player to the corresponding bars of one

or more other players.

NB: Although partial bars can be copied from the source player, the entire
bars of the target players are always overwritten, resulting in rests
in those segments of the target players’ bars that do not contain the
copied material. This method thus best lends itself to copying into
target players parts that have rests in the corresponding bars.

ARGUMENTS:

A slippery-chicken object.

The ID of the player from whose part the events are to be copied.

The ID or a list of IDs of the player or players into whose parts the
copied events are to be placed.

An integer that is the number of the first bar from which the events are
to be copied.

An integer that is the number of the first event to be copied from the
specified start bar. This number is 1-based and counts rests and ties.
An integer that is the number of the last bar from which the events are
to be copied.

NIL or an integer that is the number of the last event to be copied from
the specified end bar. This number is 1-based and counts rests and

ties. If NIL, all event from the given bar will be copied.

OPTIONAL ARGUMENTS:

ke

yword arguments:

:transposition. A positive or negative number that is the number of
semitones by which the copied material is to be first transposed. This
number can be a decimal number, in which case the resulting pitches will
be rounded to the nearest microtone (if the current tuning environment is
capable of microtones).

:consolidate-rests. T or NIL to indicate whether resulting consecutive
rests should be consolidated each into one longer rest.

T = consolidate. Default = T.

:update. T or NIL to indicate whether to update the slots of the given
slippery-chicken object after copying. T = update. Default = T.

11 SC/SLIPPERY-CHICKEN-EDIT

RETURN VALUE:
Returns T
EXAMPLE:

(let ((mini
(make-slippery-chicken
’+mini+
:ensemble ’ (((bsn (bassoon :midi-channel 1))
(tbn (tenor-trombone :midi-channel 2))
(vlc (cello :midi-channel 3))))
:tempo-map ’((1 (q 60)))
:set-palette ’((1 ((c2 e2 d4 e4 f4 g4 a4 £5))))
:set-map *((1 (1 1111 1))
:rthm-seq-palette > ((1 ((((4 4) (w)))))
(2 ((((44) ececeeceecee)
:pitch-seq-palette ((1 2 3456 7 8)))))
:rthm-seq-map ’((1 ((bsn (1 1111 1))
(tbn (1 1111 1))
(vlc (2222 22)))N)
(double-events mini ’vlc ’(bsn tbn) 2 3 4 2)
(double-events mini ’vlc ’bsn 5 1 5 nil :transposition 3.5))

=> T
SYNOPSIS:

(defmethod double-events ((sc slippery-chicken) master-player doubling-players
start-bar start-event end-bar end-event
&key transposition (consolidate-rests t) (update t))

11.26 slippery-chicken-edit/enharmonic-spellings

[slippery-chicken-edit | [Methods |
ARGUMENTS:

- A slippery-chicken object.
- The list of changes to be made, in the format ’((player changes...)),

e.g.:

’((cl (33 +t) (341t))
(pn (2 (2 D)
(ve (1 1) (1 3) (14) (186))

68

11 SC/SLIPPERY-CHICKEN-EDIT

RETURN VALUE:
Returns T.
EXAMPLE: SYNOPSIS:

(defmethod enharmonic-spellings ((sc slippery-chicken) corrections)

11.27 slippery-chicken-edit /enharmonics

[slippery-chicken-edit | [Methods |
ARGUMENTS:

A slippery-chicken object.

- An integer or a 2-item list of integers that indicates the first bar in
which the enharmonics are to be changed. If an integer, the method will
be applied to all sharp/flat pitches in the bar of that number. If a
2-item list of integers, these represent ’(bar-number note-number). The
note number is l-based and counts ties.

- An integer or a 2-item list of integers that indicates the last bar in
which the enharmonics are to be changed. If an integer, the method will
be applied to all sharp/flat pitches in the bar of that number. If a
2-item list of integers, these represent ’(bar-number note-number). The
note number is l-based and counts ties.

- The ID of the player whose part is to be changed.

OPTIONAL ARGUMENTS:

keyword arguments

- :written. T or NIL to indicate whether to change written-only pitches or
sounding-only pitches. T = written-only. Default = T.

- :pitches. NIL or a list of note-name symbols. If NIL, all sharp/flat
pitches in the specified region will be changed to their enharmonic
equivalents. If a list of one or more note-name symbols, only those
pitches will be affected.

RETURN VALUE:
Returns T.
EXAMPLE:

(let ((mini

69

11 SC/SLIPPERY-CHICKEN-EDIT

(make-slippery-chicken
’+mini+
:ensemble ’(((cl (b-flat-clarinet :midi-channel 1))
(pn (piano :midi-channel 2))
(vn (violin :midi-channel 3))))
:set-palette ’((1 ((cs4 ds4 e4 fs4 gs4 as4d b4 csb))))
tset-map ’((1 (1111 1)))
:rthm-seq-palette *((1 ((((4 4) ~-eeee--eeee -))
:pitch-seq-palette ((1 (2) 3 4 (5) 6 (7) 8)))))
:rthm-seq-map ’((1 ((cl (1 111 1))
(pn (1111 1))
(vm (1111 1))
(enharmonics mini 1 2 ’vn)
(enharmonics mini 2 3 ’pn :pitches ’(cs4 ds4))
(enharmonics mini 3 4 ’cl :written nil))

=> T
SYNOPSIS:

(defmethod enharmonics ((sc slippery-chicken) start end player
&key (written t) pitches)

11.28 slippery-chicken-edit /force-artificial-harmonics

[slippery-chicken-edit | [Methods |
ARGUMENTS:

A slippery-chicken object.

- The ID of the player whose part is to be changed.

- An integer that is the number of the first bar in which artificial
harmonics are to be created.

- An integer that is the number of the first event in that bar that is to
be changed into an artificial harmonic.

- An integer that is the number of the last bar in which artificial

harmonics are to be created.

OPTIONAL ARGUMENTS:
- An integer that is the number of the first event in that bar that is to

be changed into an artificial harmonic. If no end-event is specified, all
event objects in the last bar will be changed to artificial harmonics.

RETURN VALUE:

70

11 SC/SLIPPERY-CHICKEN-EDIT 71

Returns T.
EXAMPLE:

(let ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((vn (violin :midi-channel 1))))
:tempo-map ’((1 (q 60)))

:set-palette ’((1 ((c4 f4 b4 e5 ab d6 g7 c8))))
:set-map *((1 (1 1 1)))

:rthm-seq-palette ((1 ((((4 4) e e e ec e e e e))

:pitch-seq-palette ((1 2 345 6 7 8)))))
:rthm-seq-map ’((1 ((vn (1 1 1)))))N))
(force-artificial-harmonics mini ’vn 2 3 3 2))

=> T
SYNOPSIS:

(defmethod force-artificial-harmonics ((sc slippery-chicken) player start-bar
start-event end-bar &optional end-event)

11.29 slippery-chicken-edit /force-rest-bars

[slippery-chicken-edit | [Methods |
ARGUMENTS:

- A slippery-chicken object.

- An integer that is the number of the first bar to change to a full bar of
rest.

- An integer that is the number of the last bar to change to a full bar of
rest.

- A list containing the IDs of the players in whose parts the full-bar
rests are to be forced.

RETURN VALUE:
Returns NIL.
EXAMPLE:

(let ((mini
(make-slippery-chicken

11 SC/SLIPPERY-CHICKEN-EDIT

’+mini+
:ensemble ’(((vn (violin :midi-channel 1))
(va (viola :midi-channel 2))
(vc (cello :midi-channel 3))))
:tempo-map ’((1 (q 60)))
:set-palette ’((1 ((c4 e4 g4 b4 d5 £5 ab c6))))
tset-map *((1 (11111 1)))
:rthm-seq-palette *((1 ((((4 4) ee e e e e e e))
:pitch-seq-palette ((1 2 3456 7 8)))))
:rthm-seq-map ’((1 ((vn (1 1111 1))
(va (11 1111))
(ve (11111 1))

(force-rest-bars mini 3 5 ’(vn vc)))
=> NIL

SYNOPSIS:

(defmethod force-rest-bars ((sc slippery-chicken) start-bar end-bar players)

11.30 slippery-chicken-edit /move-clef

[slippery-chicken-edit | [Methods |
ARGUMENTS:

- A slippery-chicken object.

- An integer that is the number of the bar in which the given clef is
located.

- An integer that is the number of the event object in the given bar to
which the given clef is attached.

- An integer that is the number of the bar to which the given clef is
to be moved (this can be the same bar).

- An integer that is the number of the event object in the new bar to
which the given clef is to attached.

- The ID of the player in whose part the clef is to be moved.

RETURN VALUE:

Returns the value of the MARKS-BEFORE slot of the event object to which the
clef is moved.

EXAMPLE:

(let ((mini

72

11 SC/SLIPPERY-CHICKEN-EDIT

(make-slippery-chicken

’+mini+

:ensemble ’(((vc (cello :midi-channel 1))))

:tempo-map ’((1 (q 60)))

:set-palette ’((1 ((c2 e2 d4 e4 f4 g4 a4 £5))))

iset-map *((1 (1 11 1)))

:rthm-seq-palette ((1 ((((4 4) e e e e e e e e))

:pitch-seq-palette ((1 2 3456 7 8)))))

:rthm-seq-map > ((1 ((vc (1 11 1))))))))
(auto-clefs mini)
(move-clef mini 1 6 1 8 ’vc)
(cmn-display mini :auto-clefs nil))

SYNOPSIS:

(defmethod move-clef ((sc slippery-chicken) from-bar from-event
to-bar to-event player)

11.31 slippery-chicken-edit /move-events

[slippery-chicken-edit | [Methods |
DATE:

20-Jul-2011 (Pula)

DESCRIPTION
Move a specified sequence of consecutive event objects from one player to
another, deleting the events from the source player.

NB: Although partial bars can be moved from the source player, the entire
bars of the target players are always overwritten, resulting in rests
in those segments of the target players’ bars that do not contain the
moved material. This method thus best lends itself to moving into
target players parts that have rests in the corresponding bars.

ARGUMENTS:

A slippery-chicken object.

The ID of the source player.

The ID of the target player.

A number that is the first bar from which events are to be moved.

A number that is the first event within the start-bar that is to be
moved.

A number that is the last bar from which events are to be moved.

73

11 SC/SLIPPERY-CHICKEN-EDIT

- A number that is the last event within the end-bar that is to be
moved.

OPTIONAL ARGUMENTS:

keyword arguments:

- :transposition. A positive or negative number that is the number of
semitones by which the copied material is to be first transposed. This
number can be a decimal number, in which case the resulting pitches will
be rounded to the nearest microtone (if the current tuning environment is
capable of microtones).

- :consolidate-rests. T or NIL to indicate whether resulting consecutive
rests should be consolidated each into one longer rest.

T = consolidate. Default = T.

RETURN VALUE:
Returns T.
EXAMPLE:

(let ((mini
(make-slippery-chicken
’+mini+
:ensemble ’(((bn (bassoon :midi-channel 1))
(vc (cello :midi-channel 2))))
:tempo-map ’((1 (q 60)))
:set-palette ’((1 ((c2 e2 d4 e4 f4 g4 a4 £5))))
:set-map *((1 (1 11 1)))
:rthm-seq-palette ((1 ((((4 4) e e e e e e e e))
:pitch-seq-palette ((1 2 34 56 7 8))))
(2 (4 4 I
:rthm-seq-map ’((1 ((bn (1 1 1 1))
(ve (2222))))))))
(move-events mini ’bn ’vc 2 3 3 2)
(move-events mini ’bn ’vc 4 1 4 2 :transposition 4.5))

=>T
SYNOPSIS:

(defmethod move-events ((sc slippery-chicken) from-player to-player
start-bar start-event end-bar end-event
&key transposition (consolidate-rests t))

74

11

SC/SLIPPERY-CHICKEN-EDIT 75

11.32 slippery-chicken-edit /note-add-bracket-offset

[slippery-chicken-edit | [Methods |
ARGUMENTS:

A slippery-chicken object.

An integer that is the number of the bar in which the tuplet bracket is
located.

An integer that is the event to which the tuplet bracket is

attached. Tuplet brackets are attached to the first event object of a
given tuplet figure.

The ID of the player in whose part the tuplet bracket is located.

OPTIONAL ARGUMENTS:

keyword arguments:
NB: At least one of these arguments must be set in order to create a

change.
:dx. A positive or negative decimal number to indicate the horizontal
offset of the entire bracket.
:dy. A positive or negative decimal number to indicate the vertical
offset of the entire bracket.
:dx0. A positive or negative decimal number to indicate the horizontal
offset of the left corner of the bracket.
:dy0.A positive or negative decimal number to indicate the vertical
offset of the left corner of the bracket.
:dxl. A positive or negative decimal number to indicate the horizontal
offset of the right corner of the bracket.
:dyl. A positive or negative decimal number to indicate the vertical
offset of the right corner of the bracket.
:index. An integer that indicates which bracket of a nested bracket on
the same event is to be affected. O = outermost bracket, 1 = first nested
bracket, etc. Default = 0.

RETURN VALUE:

Returns a list of the bracket start/end indicator and the tuplet value
followed by the offset values passed to the keyword arguments.

EXAMPLE:

(let ((mini

(make-slippery-chicken
’+mini+
:ensemble ’(((vc (cello :midi-channel 1))))

11 SC/SLIPPERY-CHICKEN-EDIT 76

:tempo-map ’((1 (q 60)))
:set-palette > ((1 ((£3 g3 a3 b3))))
:set-map ’((1 (1)))
:rthm-seqg-palette *((1 ((((2 4) { 3 te te te } q))
:pitch-seq-palette ((1 2 3 4)))))
:rthm-seq-map ’((1 ((ve (1))))))))
(note-add-bracket-offset mini 1 1 ’vc
:dx -.1 :dy -.3
:dx0 -.1 :dy0 -.4
:dx1 .3 :dyl -.1))

=> (13 -0.1 -0.3 -0.1 -0.4 0.3 -0.1)
SYNOPSIS:

(defmethod note-add-bracket-offset ((sc slippery-chicken)
bar-num note-num player
&key (dx nil) (dy nil)
(dx0 nil) (dyO nil)
(dx1 nil) (dyl nil)
(index 0))

11.33 slippery-chicken-edit /process-events-by-time

[slippery-chicken-edit | [Methods |

ARGUMENTS: OPTIONAL ARGUMENTS: RETURN VALUE: EXAMPLE: SYN-
OPSIS:

(defmethod process-events-by-time ((sc slippery-chicken) function
&key (start-bar 1) end-bar)

11.34 slippery-chicken-edit/re-bar

[slippery-chicken-edit | [Methods |
ARGUMENTS:

- A slippery-chicken object.
OPTIONAL ARGUMENTS:
keyword arguments

- :start-bar. An integer that is the number of the first bar whose events
are to be re-barred.

11 SC/SLIPPERY-CHICKEN-EDIT

:end-bar. An integer that is the number of the last bar whose events are

to be re-barred.

- :min-time-sig. A time signature in the form of a 2-item list containing
the number of beats and the beat unit; e.g. ’(3 4). This is a target time
signature from which the method may occasionally if the number of events
does not fit evenly into full bars of the specified time signature.

- :verbose. T or NIL to indicate whether to print feedback on the
re-barring process to the Listener. T = print feedback. Default = NIL.

- :check-ties. T or NIL to indicate whether to force the method to ensure
that all ties have a beginning and ending. T = check.

Default = T.

- :auto-beam. T, NIL, or an integer. If T, the method will automatically
attach beam indications to the corresponding events according to the beat
unit of the time signature. If an integer, the method will beam in
accordance with a beat unit that is equal to that integer. If NIL, the
method will not automatically place beams. Default = T.

- :update-slots. T or NIL to indicate whether to update the corresponding

slots. This is an internal argument and not needed by the user.

RETURN VALUE:
Returns T.
EXAMPLE:

(let ((mini
(make-slippery-chicken
’+mini+
:ensemble ’(((vn (violin :midi-channel 1))))
:tempo-map ’((1 (q 60)))
:set-palette ’((1 ((c2 e2 d4 e4 f4 g4 a4 £5))))
tset-map *((1 (111111 1))
:rthm-seq-palette ’((1 ((((2 4) q e s 8))
:pitch-seq-palette ((1 2 3 4)))))
:rthm-seq-map ’((1 ((vn (1 11111 1))
(re-bar mini :start-bar 2 :end-bar 5 :min-time-sig ’(4 4) :auto-beam 4))

=>T
SYNOPSIS:

(defmethod re-bar ((sc slippery-chicken)
&key start-bar
end-bar
;; the following is just a list like ’(3 8) ’(5 8)

11 SC/SLIPPERY-CHICKEN-EDIT

min-time-sig

verbose

;3 MDE Thu Feb 9 10:36:02 2012 -- seems if we don’t

;3 update-slots then the new bar structure isn’t displayed
(update-slots t)

(check-ties t)

;; could also be a beat rhythmic unit

(auto-beam t))

11.35 slippery-chicken-edit /remove-extraneous-dynamics

[slippery-chicken-edit | [Methods |
ARGUMENTS:

- A slippery-chicken object.
RETURN VALUE:

Returns T.
EXAMPLE:

(let ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((vn (violin :midi-channel 1))))

:tempo-map ’((1 (q 60)))

:set-palette ’((1 ((c2 e2 d4 e4 f4 g4 a4 £5))))

tset-map *((1 (111111 1)))

:rthm-seqg-palette >((1 ((((2 4) q e s 8))
:pitch-seq-palette ((1 2 3 4))
:marks (f 1 £ 2 £ 3 f 4))))

:rthm-seq-map ’((1 ((vn (1 11111 1)))))N)

(remove-extraneous-dynamics mini))

=T
SYNOPSIS:

(defmethod remove-extraneous-dynamics ((sc slippery-chicken))

11.36 slippery-chicken-edit /replace-events

[slippery-chicken-edit | [Methods |

11 SC/SLIPPERY-CHICKEN-EDIT

ARGUMENTS:

A slippery-chicken object.

- The ID of the player whose part is to be modified.

- An integer that is the number of the bar in which the change is to be
made; or a reference to the bar in the format ’(section sequence bar).

- An integer that is the number of the first event object in the given bar
to replace.

- An integer that is the total number of consecutive original event objects
to replace.

- A list of the new event objects, each in turn specified as a 2-item list

in the format (pitch rhythm), e.g. ’((c4 e)). Rests are indicated with

NIL or ’r, e.g. (nil s) (r h). Chords are indicated by enclosing the

pitches of the chord in a list, e.g. ((c4 ed) e).

OPTIONAL ARGUMENTS:

- T or NIL to indicate whether to automatically re-beam the given bar after
replacing the events. T = beam. Default = NIL.

- A list of integers to indicate tuplet bracket placement, in the format
> (tuplet-value start-event end-event). These numbers are O-based and
inclusive and count rests.

RETURN VALUE:
Returns T.
EXAMPLE:

(let ((mini
(make-slippery-chicken
’+mini+
:ensemble ’(((vn (violin :midi-channel 1))))
:tempo-map ’((1 (q 60)))
:set-palette *((1 ((c2 e2 d4 e4 f4 g4 a4 £5))))
:set-map *((1 (1 11 1)))
:rthm-seq-palette ’((1 ((((2 4) q (e) s s))
:pitch-seq-palette ((1 2 3)))))
:rthm-segq-map ’((1 ((vn (1 1 1 1))))))))
(replace-events mini ’vn 1 2 1 °((nil s) ((ds5 £fsb5) s)) t)
(replace-events mini ’vn 2 2 1 ’((csb e)))
(replace-events mini ’vn ’(1 3 1) 3 1 ’((df4 s)))
(replace-events mini ’vn 4 1 1 ’((ds4 te) (r te) (b3 te)) t ’(3 0 2)))

=> T

79

11

SC/SLIPPERY-CHICKEN-EDIT

SYNOPSIS:

(defmethod replace-events ((sc slippery-chicken) player bar-num start-event

replace-num-events new-events
&optional (auto-beam nil) tuplet-brackets)

11.37 slippery-chicken-edit /replace-multi-bar-events

[slippery-chicken-edit | [Methods |
ARGUMENTS:

A slippery-chicken object.

The ID of the player whose part is to be modified.

An integer that is the number of the first bar in which event objects are
to be replaced. This can be an absolute bar number or a list in the form
’(section sequence bar); or with subsections then e.g. ’((3 1) 4 2)).

An integer that is the number of bars in which event objects will be
replaced.

The list of new event objects. The new event objects can be passed as
complete event objects; as a list of 2-item lists that are
note-name/rhythm pairs, e.g: ’((c4 q) (d4 e)); or as a list with two
sub-lists, the first being just the sequence of rhythms and the second
being just the sequence of pitches, e.g: ’((q e) (c4 d4)). For the
latter, :interleaved must be set to NIL. (see :interleaved below). Pitch
data is the usual cs4 or (cs4 cd3) for chords, and NIL or ’r indicate a
rest. NB: All pitches are sounding pitches; written pitches will be
created for transposing instruments where necessary.

OPTIONAL ARGUMENTS:

keyword arguments:

:interleaved. T or NIL to indicate whether the new event data is to be
processed as a list of note-name/rhythm pairs (or existing event
objects), or if it is to be processed as a list with two sub-lists, the
first containing the sequence of rhythms and the second containing the
sequence of pitches (see above). T = interleaved, i.e. already existing
event objects or a list of note-name/rhythm pairs. NIL = separate lists
for rhythms and pitches. Default = T.

If this argument is T, the list of 2-element lists (note-name/rhythm
pairs) is passed to make-events, but such a list can contain no ties. If
the argument is set to NIL, the rhythm and pitch data is passed as two
separate lists to make-events2 where + can be used to indicate ties.
:consolidate-rests. T or NIL to indicate whether shorter rests should
automatically be consolidated into a single longer rest.

80

11 SC/SLIPPERY-CHICKEN-EDIT 81

T = consolidate. Default = T.
NB: slippery chicken will always consolidate full bars of rest into
measure-rests, regardless of the value of this argument.

- :beat. NIL or an integer (rhythm symbol) that indicates which beat basis
will be used when consolidating rests. If NIL, the beat of the time
signature will be used (e.g. quarter in 4/4). Default = NIL.

- :auto-beam. T or NIL to indicate whether to automatically beam the new
events. T = automatically beam. Default = T.

- :tuplet-bracket. NIL or an integer to indicate whether to automatically
add tuplet (e.g. triplet/quintuplet) brackets to the new events where
applicable. If this is an integer, all tuplets in the given bar will be
given a tuplet bracket with that integer as the tuplet number. NB: This
option does not allow for setting tuplets of different numbers for the
same bar. To do that, set :tuplet-bracket to NIL and add the
tuplet-brackets manually. NIL = place no brackets. Default = NIL.

RETURN VALUE:
The number of new events used to replace the old ones.
EXAMPLE:

(let ((mini
(make-slippery-chicken
’+mini+
:ensemble ’(((vn (violin :midi-channel 1))))
:set-palette ’((1 ((d4 e4 £4 g4))))
tset-map ’((1 (11111 1))
2111111
:rthm-seq-palette ’((1 ((((2 4) g e s 8))
:pitch-seq-palette ((1 2 3 4))))
(2 ((((24) ess @
(s s e +e e))
:pitch-seq-palette ((1 2 3432 4 1)))))
:rthm-seq-map ’((1 ((vn (1 1111 1))))
(2 (vn (222222))))))
(replace-multi-bar-events mini ’vn 2 3
’((cs5 h) ((ds5 £s5) h) (nil h)))
(replace-multi-bar-events mini ’vn (2 2 2) ’3
>((h b h) (csb5 (ds5 £s5) nil))
:interleaved nil)
(replace-multi-bar-events mini ’vn 1 1
’((nil e) (nil e) (nil e) (csd e))
:consolidate-rests t)
(replace-multi-bar-events mini ’vn 8 1
>((nil q) (b3 e) (cs4d s) (ds4 s))

11 SC/SLIPPERY-CHICKEN-EDIT 82

:auto-beam t))
=> 4
SYNOPSIS:

(defmethod replace-multi-bar-events ((sc slippery-chicken)
player start-bar num-bars new-events
&key
;3 24.3.11: see above.
(interleaved t)
;; MDE Mon Apr 23 12:36:08 2012 -- changed
;; default to nil
(consolidate-rests nil)
;; for consolidate rests
(beat nil)
;; MDE Mon Apr 23 12:36:08 2012 -- changed
;3 default to nil
(auto-beam nil)
;3 31.3.11: if this is t, then rthms > a
;; beat will case an error
(auto-beam-check-dur t)
(tuplet-bracket nil))

11.38 slippery-chicken-edit /replace-tempo-map

[slippery-chicken-edit | [Methods |
ARGUMENTS:

- A slippery-chicken object
- A list that is the new tempo-map.

RETURN VALUE:
T
EXAMPLE:

(let ((mini
(make-slippery-chicken
’+mini+
:ensemble ’(((pno (piano :midi-channel 1))))
:tempo-map ’((1 (q 60)))
:set-palette > ((1 ((c4 d4 f4 g4 a4 c5 d5 5 gb ab c6))))

11 SC/SLIPPERY-CHICKEN-EDIT

;set-map ((1 (1 1111111))
:rthm-seq-palette *((1 ((((2 4) q q))
:pitch-seq-palette ((1 (2))))))
:rthm-seq-map ’((1 ((pno (1 1 11111 1))))))))
(replace-tempo-map mini ’((1 (q 60 "Andante")) ((1 3 1) (e 80)))))

=T
SYNOPSIS:

(defmethod replace-tempo-map ((sc slippery-chicken) tm)

11.39 slippery-chicken-edit /respell-bars

[slippery-chicken-edit | [Methods |
ARGUMENTS:

- A slippery-chicken object.
RETURN VALUE:

Returns NIL.

EXAMPLE:

(let ((mini

(make-slippery-chicken

’+mini+

:ensemble ’(((vn (violin :midi-channel 1))))
:tempo-map ’((1 (q 60)))

:set-palette ’((1 ((cs4 ds4 df5 efb5))))
:set-map *((1 (1 111 1)))
:rthm-seq-palette *((1 ((((2 4) q e s 8))

:pitch-seq-palette ((1 2 3 4)))))
:rthm-seq-map ’*((1 ((vn (1 11 1 1))))))))
(respell-bars mini))

=> NIL
SYNOPSIS:

(defmethod respell-bars ((sc slippery-chicken))

83

11 SC/SLIPPERY-CHICKEN-EDIT

11.40 slippery-chicken-edit/respell-notes

[slippery-chicken-edit | [Methods |
ARGUMENTS:

- A slippery-chicken object.
OPTIONAL ARGUMENTS:

- A list of specific notes whose pitches are to be enharmonically flipped,
in the format, e.g. ’((vn (1 1) (1 4)) (vc (2 3) (3 3)))

RETURN VALUE:
Returns T.
EXAMPLE:

;; An example using respell-notes for the whole slippery-chicken object.
(let ((mini
(make-slippery-chicken
’+mini+
:ensemble ’(((vn (violin :midi-channel 1))))
:tempo-map ’((1 (q 60)))
:set-palette ’((1 ((cs4 ds4 df5 efb))))
:set-map *((1 (1 111 1)))
:rthm-seq-palette *((1 ((((2 4) q e s 8))
:pitch-seq-palette ((1 2 3 4)))))
:rthm-seq-map ’((1 ((vn (1 1 11 1))))))))
(respell-notes mini))

;; An example specifying which pitches are to be enharmonically changed.
(let ((mini
(make-slippery-chicken
’+mini+
:ensemble ’(((vn (violin :midi-channel 1))))
:tempo-map ’((1 (q 60)))
:set-palette ’((1 ((cs4 ds4 df5 efb))))
:set-map *((1 (1111 1))
:rthm-seq-palette > ((1 ((((2 4) q e s s8))
:pitch-seq-palette ((1 2 3 4)))))
:rthm-seq-map ’((1 ((vn (1 1 1 1 1)))))))N
(respell-notes mini ’((vn (1 1) (1 4))))
(cmn-display mini :respell-notes nil))

=>T

84

11 SC/SLIPPERY-CHICKEN-EDIT

SYNOPSIS:

(defmethod respell-notes ((sc slippery-chicken) &optional corrections)

11.41 slippery-chicken-edit /respell-notes-for-player

[slippery-chicken-edit | [Methods |
ARGUMENTS:

- A slippery-chicken object.
- The ID of the player whose pitches are to be modified.

OPTIONAL ARGUMENTS:

- T or NIL to indicate whether to change written pitches only or sounding
pitches only. T = change written pitches only. Default = NIL.

RETURN VALUE:
Returns NIL.
EXAMPLE:

(let ((mini
(make-slippery-chicken
’+mini+
:ensemble ’(((cl (b-flat-clarinet :midi-channel 1))
(vn (violin :midi-channel 2))))
:tempo-map ’((1 (q 60)))
:set-palette ’((1 ((b3 cs4 b4 csb))))
:set-map *((1 (1 111 1))
:rthm-seq-palette *((1 ((((2 4) q e s 8))
:pitch-seq-palette ((1 2 3 4)))))
:rthm-seq-map ’((1 ((cl (1 11 1 1))
(v (1111 1))))))))
(respell-notes-for-player mini ’cl t)
(cmn-display mini :respell-notes nil :in-c nil))

=> T
SYNOPSIS:

(defmethod respell-notes-for-player ((sc slippery-chicken) player
&optional written)

85

11 SC/SLIPPERY-CHICKEN-EDIT 86

11.42 slippery-chicken-edit /rest-to-note

[slippery-chicken-edit | [Methods |
ARGUMENTS:

A slippery-chicken object.

- An integer that is the number of the bar in which the rest is to be
changed to a note.

- An integer that is the number of the rest in the given bar that is to be
changed. This number counts rests only, not sounding notes or events.

- The ID of the player whose part is to be changed.

- A note-name symbol that is to be the pitch of the new note, or a list of

note-name symbols that will make up a chord.

OPTIONAL ARGUMENTS:

- A mark or list of marks to be attached to the new note.
RETURN VALUE:

Returns the new event object created.
EXAMPLE:

(let ((mini
(make-slippery-chicken
’+mini+
:ensemble ’(((vn (violin :midi-channel 1))))
:tempo-map ’((1 (q 60)))
:set-palette ’((1 ((cs4 ds4 fs4))))
tset-map *((1 (1 111 1)))
:rthm-seq-palette ’((1 ((((2 4) q (e) s s))
:pitch-seq-palette ((1 2 3)))))
:rthm-seq-map ’((1 ((vn (1 11 1 1))1N))
(rest-to-note mini 2 1 ’vn ’gsb)
(rest-to-note mini 3 1 ’vn ’(gs5 bb))
(rest-to-note mini 4 1 ’vn ’(gs4 b4) ’ppp)
(rest-to-note mini 5 1 ’vn ’(gs4 b4) ’(fff pizz)))

EVENT: start-time: 9.000, end-time: 9.500,
duration-in-tempo: 0.500,
compound-duration-in-tempo: 0.500,
amplitude: 0.900
bar-num: 5, marks-before: NIL,

11 SC/SLIPPERY-CHICKEN-EDIT 87

tempo-change: NIL
instrument-change: NIL
display-tempo: NIL, start-time-qtrs: 9.000,
midi-time-sig: NIL, midi-program-changes: NIL,
8va: 0
pitch-or-chord:
CHORD: auto-sort: T, marks: NIL, micro-tone: NIL
SCLIST: sclist-length: 2, bounds-alert: T, copy: T
LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL
NAMED-OBJECT: id: NIL, tag: NIL,
data: (
[...]

SYNOPSIS:

(defmethod rest-to-note ((sc slippery-chicken) bar-num rest-num player new-note
&rest marks)

11.43 slippery-chicken-edit /rm-marks-from-note

[slippery-chicken-edit | [Methods |
ARGUMENTS:

- A slippery-chicken object.

- An integer that is the number of the bar from which the marks are to be
removed.

- An integer that is the number of the note in that bar from which the

marks are to be removed.

The ID of the player from whose part the marks are to be removed.

OPTIONAL ARGUMENTS:

- A specific mark or list of specific marks that are to be removed. If this
argument is not specified, no marks will be removed.

RETURN VALUE:
Returns T.
EXAMPLE:
(let ((mini

(make-slippery-chicken
’+mini+

11

=>

SC/SLIPPERY-CHICKEN-EDIT

:ensemble ’(((vn (violin :midi-channel 1))))
:tempo-map ’((1 (q 60)))
:set-palette ’((1 ((cs4 ds4 fs4))))
:set-map *((1 (1 11 1)))
:rthm-seq-palette *((1 ((((2 4) q e s 8))
:pitch-seq-palette ((1 2 3 4))
:marks (a 2 s 2 fff 2 pizz 2))))
:rthm-segq-map ’((1 ((vn (1 1 1 1))))))))
(rm-marks-from-note mini 2 2 ’vn ’pizz)
(rm-marks-from-note mini 3 2 ’vn ’(pizz fff))
(rm-marks-from-note mini 3 2 ’vn))

T

SYNOPSIS:

(defmethod rm-marks-from-note ((sc slippery-chicken) bar-num note-num

player &rest marks)

11.44 slippery-chicken-edit /rm-marks-from-notes

[slippery-chicken-edit | [Methods |
ARGUMENTS:

A slippery-chicken object.

An integer or a 2-item list of integers indicating the first bar and note
from which to remove marks. If an integer, this is the bar number and the
mark will be removed from all notes in the bar. If a 2-item list, this is
a reference to the bar number and number of the first note in the bar
from which to start removing marks, in the form e.g. (3 1).

An integer or a 2-item list of integers indicating the last bar and note
from which to remove marks. If an integer, this is the bar number and the
mark will be removed from all notes in the bar. If this is a 2-item list,
this is a reference to the bar number and number of the first note in the
bar from which to start removing marks, in the form e.g. (3 1).

The ID or a list of IDs of the players from whose parts the marks are to
be removed.

OPTIONAL ARGUMENTS:

NB: The <marks> argument is a required argument for this method.

The mark or a list of the marks to remove. This method will only remove
specified marks.

RETURN VALUE:

88

11 SC/SLIPPERY-CHICKEN-EDIT 89

Returns T.

EXAMPLE:

(let ((mini

(make-slippery-chicken

’+mini+

:ensemble ’ (((f1 (flute :midi-channel 1))
(hn (french-horn :midi-channel 2))
(vn (violin :midi-channel 3))))
:tempo-map ’((1 (q 60)))
:set-palette ’((1 ((cs4 ds4 fs4))))
:set-map *((1 (1 111 1)))
:rthm-seq-palette *((1 ((((2 4) q e s 8))

:pitch-seq-palette ((1 2 3 4))
:marks (a 2 s 2 £ff 2))))

:rthm-seq-map ’((1 ((£f1 (1 11 1 1))

(rm-marks-from-notes
(rm-marks-from-notes
(rm—-marks-from-notes
(rm-marks-from-notes

=> T

SYNOPSIS:

(hn (1111 1))

(vm (1 111 1OD)NN
mini 1 2 °f1 ’fff)
mini >(1 2) ’(2 1) ’hn ’(fff a))
mini 3 (4 3) ’(hn vn) ’(fff s a))
mini 5 5 nil ’fff))

(defmethod rm-marks-from-notes ((sc slippery-chicken) start end

players &rest marks)

11.45 slippery-chicken-edit/rm-slurs

[slippery-chicken-edit | [Methods |

ARGUMENTS:

- A slippery-chicken object.

- An integer or a 2-item list of integers indicating the first bar and note
from which to remove slurs. If an integer, this is the bar number and the
slurs will be removed from all notes in the bar. If a 2-item list, this is
a reference to the bar number and number of the first note in the bar
from which to start removing slurs, in the form e.g. (3 1).

- An integer or a 2-item list of integers indicating the last bar and note
from which to remove slurs. If an integer, this is the bar number and the

11 SC/SLIPPERY-CHICKEN-EDIT

slurs will be removed from all notes in the bar. If this is a 2-item list,
this is a reference to the bar number and number of the first note in the
bar from which to start removing slurs, in the form e.g. ’(3 1).

- The ID or a list of IDs of the players from whose parts the marks are to
be removed.

RETURN VALUE:
Returns T.
EXAMPLE:

(let ((mini
(make-slippery-chicken
’+mini+
:ensemble ’ (((f1 (flute :midi-channel 1))
(hn (french-horn :midi-channel 2))
(vn (violin :midi-channel 3))))
:tempo-map ’((1 (q 60)))
:set-palette ’((1 ((c4 d4 e4 fsd gs4 as4 cb d5))))
iset-map ’((1 (1 111 1)))
:rthm-seq-palette ((1 ((((4 4) e e e e e e e e))
:pitch-seq-palette ((1 2 3456 7 8))
:marks (slur 1 2 slur 3 4 slur 5 6 slur 7 8))))
:rthm-seq-map ’((1 ((£f1 (1 11 1 1))
(hn (1 111 1))
(vn (11 111))))))))
(rm-slurs mini 1 2 ’fl)
(rm-slurs mini ’(1 3) ’(2 1) ’hn)
(rm-slurs mini 3 ’(4 3) ’(hn vn))
(rm-slurs mini 5 5 nil))

=> T
SYNOPSIS:

(defmethod rm-slurs ((sc slippery-chicken) start end players)

11.46 slippery-chicken-edit/sc-delete-beams

[slippery-chicken-edit | [Methods |
ARGUMENTS:

- A slippery-chicken object.

11 SC/SLIPPERY-CHICKEN-EDIT

- An integer that is the number of the bar in which the beams are to be
deleted.
- The ID of the player from whose part the beams are to be deleted.

OPTIONAL ARGUMENTS:

- An integer that is the number of the note that currently holds the
start-beam information (i.e., the BEAMS slot is 1). This number is
1-based and counts ties.

- An integer that is the number of the note that currently holds the
end-beam information (i.e., the BEAMS slot is 0). This number is 1-based
and counts ties.

RETURN VALUE:
If deleting all beams in a bar, returns T, otherwise returns NIL.
EXAMPLE:

(let ((mini
(make-slippery-chicken
’+mini+
:ensemble ’(((vc (cello :midi-channel 1))))
:set-palette ’((1 ((d3 e3 £3 g3 a3 b3 c4 e4))))
:set-map ((1 (1 11 1)))
:rthm-seq-palette ’((1 ((((4 4) ~-ee--ee--ee--ee -))
:pitch-seq-palette ((1 2 3456 7 8)))))
:rthm-seq-map ’((1 ((ve (1 1 1 1))))))))
(sc-delete-beams mini 2 ’vc)
(sc-delete-beams mini 3 ’vc 3 4))

=> NIL

SYNOPSIS:

(defmethod sc-delete-beams ((sc slippery-chicken) bar-num player
&optional start-note end-note)

11.47 slippery-chicken-edit/sc-delete-marks

[slippery-chicken-edit | [Methods |
ARGUMENTS:

- A slippery-chicken object.

11 SC/SLIPPERY-CHICKEN-EDIT 92

- An integer that is the number of the bar in which the marks are to be
deleted.

- An integer that is the number of the note from which the marks are to be
deleted.

- The ID of the player from whose part the marks are to be deleted.

RETURN VALUE:
Returns T.
EXAMPLE:

(let ((mini
(make-slippery-chicken
’+mini+
:ensemble ’(((vn (violin :midi-channel 1))))
:set-palette ’((1 ((cs4 ds4 fs4))))
:set-map *((1 (1 11 1)))
:rthm-seq-palette ’((1 ((((2 4) q (e) s s))
:pitch-seq-palette ((1 2 3))
:marks (a 2 s 2 fff 2 pizz 2))))
:rthm-seq-map ’((1 ((vn (1 1 1 1))))))))
(sc-delete-marks mini 2 2 ’vn))

=> T
SYNOPSIS:

(defmethod sc-delete-marks ((sc slippery-chicken) bar-num note-num player)

11.48 slippery-chicken-edit /sc-delete-marks-before

[slippery-chicken-edit | [Methods |
ARGUMENTS:

- A slippery-chicken object.

- An integer that is the number of the bar in which the event object is to
be modified.

- An integer that is the number of the note within the given bar for which
the MARKS-BEFORE slot is to be set to NIL.

- The ID of the player whose part is to be affected.

RETURN VALUE:

11 SC/SLIPPERY-CHICKEN-EDIT

Returns NIL.
EXAMPLE:

(let ((mini
(make-slippery-chicken
’+mini+
:ensemble ’(((vc (cello :midi-channel 1))))
:tempo-map ’((1 (q 60)))
:set-palette ’((1 ((d3 e3 £3 g3 a3 b3 c4 e4))))
:set-map *((1 (1 1 1)))
:rthm-seq-palette > ((1 ((((2 4) q e s s8))
:pitch-seq-palette ((1 2 3 4)))))
:rthm-seq-map ’((1 ((ve (1 1 1))
(add-mark-before-note mini 2 3 ’vc ’fff)
(add-mark-before-note mini 2 3 ’vc ’s)
(add-mark-before-note mini 2 3 ’vc ’lhp)
(sc-delete-marks-before mini 2 3 ’vc))

=> NIL

SYNOPSIS:

(defmethod sc-delete-marks-before ((sc slippery-chicken)
bar-num note-num player)

11.49 slippery-chicken-edit /sc-delete-marks-from-event

[slippery-chicken-edit | [Methods |
ARGUMENTS:

- A slippery-chicken object.

An integer that is the number of the bar from which the marks are to be

deleted.

- An integer that is the number of the event within the given bar from
which the marks are to be deleted.

- The ID of the player from whose part the marks are to be deleted.

RETURN VALUE:

Returns NIL.

EXAMPLE:

93

11 SC/SLIPPERY-CHICKEN-EDIT

(let ((mini
(make-slippery-chicken
’+mini+
:ensemble ’(((vc (cello :midi-channel 1))))
:tempo-map ’((1 (q 60)))
:set-palette ’((1 ((d3 e3 £3 g3 a3 b3 c4 e4))))
tset-map *((1 (1 1 1)))
:rthm-seq-palette > ((1 ((((2 4) q e s s))
:pitch-seq-palette ((1 2 3 4))
:marks (a 1 4 lhp 4 s 3 4 slur 1 2))))
:rthm-seq-map ’((1 ((ve (1 1 1))))))))
(sc-delete-marks-from-event mini 2 4 ’vc))

=> NIL
SYNOPSIS:

(defmethod sc-delete-marks-from-event ((sc slippery-chicken)
bar-num event-num player)

11.50 slippery-chicken-edit /sc-force-rest

[slippery-chicken-edit | [Methods |
DATE:

23-Jul-2011 (Pula)

DESCRIPTION
Change the specified event object to a rest.

ARGUMENTS:

- A slippery-chicken object.

- An integer that is the number of the bar in which the rest is to be
forced.

- An integer that is the number of the event within that bar which is to be
changed into a rest. This number is 1-based and counts tied notes but not
rests.

- The ID of the player whose part is to be modified.

OPTIONAL ARGUMENTS:

- T or NIL to indicate whether the specified bar should be automatically
beamed after the change has been made. NB: In general, calling auto-beam

94

11 SC/SLIPPERY-CHICKEN-EDIT 95

is a good idea (esp. when deleting notes under an existing beam) ;
however, auto-beam may fail when addressing bars that contain notes
longer than one beat. T = automatically beam. Default = NIL.

RETURN VALUE:
The new rthm-seq-bar object.
EXAMPLE:

(let ((mini
(make-slippery-chicken
’+mini+
:ensemble ’(((vc (cello :midi-channel 1))))
:set-palette ’((1 ((a3 b3 c4 e4))))
:set-map *((1 (1 1 1)))
:rthm-seq-palette *((1 ((((2 4) q e s 8))
:pitch-seq-palette ((1 2 3 4)))))
:rthm-seq-map ’((1 ((vc (1 1 1))))))))
(sc-force-rest mini 2 3 ’vc)
(sc-force-rest mini 3 3 ’vc t))

=>

RTHM-SEQ-BAR: time-sig: 3 (2 4), time-sig-given: T, bar-num: 3,
old-bar-nums: NIL, write-bar-num: NIL, start-time: 4.000,
start-time-qtrs: 4.0, is-rest-bar: NIL, multi-bar-rest: NIL,
show-rest: T, notes—needed: 3,
tuplets: NIL, nudge-factor: 0.35, beams: ((1 2)),
current-time-sig: 3, write-time-sig: NIL, num-rests: 1,
num-rhythms: 4, num-score-notes: 3, parent-start-end: NIL,
missing-duration: NIL, bar-line-type: 2,
player-section-ref: (1 VC), nth-seq: 2, nth-bar: O,
rehearsal-letter: NIL, all-time-sigs: (too long to print)
sounding-duration: 1.750,
rhythms: (

[...]

SYNOPSIS:

(defmethod sc-force-rest ((sc slippery-chicken) bar-num note-num player
&optional (auto-beam nil))

11.51 slippery-chicken-edit/sc-move-dynamic

[slippery-chicken-edit | [Methods |

11 SC/SLIPPERY-CHICKEN-EDIT 96

ARGUMENTS:

- A slippery-chicken object.

- An integer that is the number of the bar in which to move the dynamic.

- The ID of the player in whose part the dynamic is located.

- An integer that is the number of the event object from which the dynamic
is to be moved. This number is 1-based and counts both rests and ties.

- An integer that is the number of the event object to which the dynamic
is to be moved. This number is 1-based and counts both rests and ties.

OPTIONAL ARGUMENTS:

- An integer that is the number of the bar to which the dynamic should be
moved. If this is not specified, the dynamic will be moved to the
specified event within the same bar.

RETURN VALUE:
Returns T.
EXAMPLE:

(let ((mini
(make-slippery-chicken
’+mini+
:ensemble ’(((vc (cello :midi-channel 1))))
:set-palette ’((1 ((a3 b3 c4 e4))))
:set-map *((1 (1 1 1)))
:rthm-seq-palette *((1 ((((2 4) q e s 8))
:pitch-seq-palette ((1 2 3 4))
:marks (££f 1))))
:rthm-seq-map ’((1 ((vc (1 1 1))))))))
(sc-move-dynamic mini 1 ’vc 1 3)
(sc-move-dynamic mini 2 ’vc 1 4 3))

=> T

SYNOPSIS:

(defmethod sc-move-dynamic ((sc slippery-chicken) bar-num player
;; event numbers l-based but counting rests and ties
from to &optional to-bar)

11.52 slippery-chicken-edit /sc-remove-dynamic

[slippery-chicken-edit | [Methods |

11 SC/SLIPPERY-CHICKEN-EDIT

ARGUMENTS:

- A slippery-chicken object.

- An integer that is the number of the bar from which the dynamics are to
be removed.

- The ID of the player from whose part the dynamics are to be removed.

- An integer or a list of integers that are the numbers of the events from
which the dynamics are to be removed. Event numbers include ties and
rests.

RETURN VALUE:
Returns the last dynamic removed.
EXAMPLE:

(let ((mini
(make-slippery-chicken
’+mini+
:ensemble ’(((vc (cello :midi-channel 1))))
:set-palette *((1 ((a3 b3 c4 e4))))
:set-map ((1 (1 1 1)))
:rthm-seq-palette ’((1 ((((2 4) g e s 8))
:pitch-seq-palette ((1 2 3 4))
:marks (£ff 1 ppp 3))))
:rthm-seq-map ’((1 ((ve (1 1 1))))))))
(sc-remove-dynamic mini 2 ’vc 1)
(sc-remove-dynamic mini 3 ’vc ’(1 3)))

=> PPP
SYNOPSIS:

(defmethod sc-remove-dynamic ((sc slippery-chicken) bar-num player
&rest event-nums)

11.53 slippery-chicken-edit/sc-remove-dynamics

[slippery-chicken-edit | [Methods |
DATE:

16-Mar-2011

DESCRIPTION

97

11 SC/SLIPPERY-CHICKEN-EDIT

Remove all dynamic marks from the MARKS slots of all consecutive event
objects within a specified region of bars.

ARGUMENTS:

- A slippery-chicken object.

- An integer or a list of two integers. If a single integer, this is the
number of the first bar from which the dynamics will be removed, and all
dynamics will be removed from the full bar. If this is a list of two
integers, they are the numbers of the first bar and first note within
that bar from which the dynamics will be removed, in the form ’(bar-num
note-num). Note numbers are 1-based and count ties but not rests.

- An integer or a list of two integers. If a single integer, this is the
number of the last bar from which the dynamics will be removed, and all
dynamics will be removed from the full bar. If this is a list of two
integers, they are the numbers of the last bar and last note within that
bar from which the dynamics will be removed, in the form ’(bar-num
note-num). Note numbers are 1-based and count ties but not rests.

- A single ID or a list of IDs of the players from whose parts the dynamics
are to be removed.

RETURN VALUE:
Returns T.
EXAMPLE:

(let ((mini
(make-slippery-chicken
’+mini+
:ensemble ’(((vn (violin :midi-channel 1))
(va (viola :midi-channel 2))
(vc (cello :midi-channel 3))))
:set-palette ’((1 ((d3 e3 £3 g3 a3 b3 c4 e4 f4 g4 a4 b4))))
:set-map *((1 (1 1 1)))
:rthm-seq-palette *((1 ((((2 4) q e s 8))
:pitch-seq-palette ((1 2 3 4))
:marks (fff 1 ppp 3))))
:rthm-seg-map ’((1 ((vn (1 1 1))
(va (11 1))
(ve (1 1.13)))0)))
(sc-remove-dynamics mini ’(1 2) ’(2 2) ’vn)
(sc-remove-dynamics mini 2 3 ’(va vc)))

=> T

11

SY

(de

SC/SLIPPERY-CHICKEN-EDIT

NOPSIS:

fmethod sc-remove-dynamics ((sc slippery-chicken) start end players)

11.54 slippery-chicken-edit /set-cautionary-accidental

[slippery-chicken-edit | [Methods |
DATE:

28-Sep-2011

DESCRIPTION

Place a cautionary accidental (sharp/flat/matural sign in parentheses)

before a specified note.

NB: Adding cautionary accidentals to pitches within chords is currently
only possible in LilyPond output. Adding cautionary accidentals to
single pitches is possible in both CMN and LilyPond.

NB: Since the cmn-display and write-lp-data-for-all methods call
respell-notes by default, that option must be explicitly set to NIL
within the calls to those methods in order for this method to be
effective.

ARGUMENTS:

A slippery-chicken object.

An integer that is the number of the bar in which to add the cautionary
accidental.

An integer or a 2-item list of integers that is the number of the note
within that bar to which to add the cautionary accidental. This number is
1-based and counts ties. If a 2-item list such, this indicates that the
pitch is within a chord; e.g., ’(1 2) indicates that a cautionary
accidental should be added to the 2nd pitch up from the bottom of the
chord located at the 1st note position in the bar.

The ID of the player to whose part the cautionary accidental is to be
added.

OPTIONAL ARGUMENTS:

T or NIL to indicate whether to add the cautionary accidental to only the
written pitch or only the sounding pitch. T = written only.
Default = NIL.

99

11 SC/SLIPPERY-CHICKEN-EDIT 100

RETURN VALUE:
Returns T.
EXAMPLE:

(let ((mini
(make-slippery-chicken
’+mini+
:ensemble ’(((cl (b-flat-clarinet :midi-channel 1))
(pn (piano :midi-channel 2))))
:set-palette ’((1 ((ds3 e3 £s3 af3 bf3 c4 efd £s4))))
:set-map *((1 (1 1 1)))
:rthm-seq-palette > ((1 ((((2 4) q e s s8))
:pitch-seq-palette ((1 2 (3) 4))
:marks (fff 1 ppp 3))))
:rthm-seg-map ’((1 ((cl (1 1 1))
(pn (1 1 1))
(respell-notes mini)
(set-cautionary-accidental mini 3 2 ’cl t)
(set-cautionary-accidental mini 2 1 ’pn)
(set-cautionary-accidental mini 2 2 ’pn)
(set-cautionary-accidental mini 3 ’(3 3) ’pn)
(write-lp-data-for-all mini :respell-notes nil))

=>T
SYNOPSIS:

(defmethod set-cautionary-accidental ((sc slippery-chicken) bar-num note-num
player &optional written)

11.55 slippery-chicken-edit/set-rehearsal-letter

[slippery-chicken-edit | [Methods |
ARGUMENTS:

- A slippery-chicken object.

- An integer that is the number of the bar to which the rehearsal
letter/number is to be added.

- A symbol that is the rehearsal letter/number to be added (e.g. ’A or ’1)

OPTIONAL ARGUMENTS:

11 SC/SLIPPERY-CHICKEN-EDIT 101

- The player ID or a list of player IDs to whose parts the rehearsal
letter/number is to be added. If no value is given here, the rehearsal
letter/number will be added to the first (top) instrument in each group
of the ensemble, as specified in staff-groupings.

RETURN VALUE:
Returns T.
EXAMPLE:

(let ((mini
(make-slippery-chicken
’+mini+
:ensemble ’(((vn (violin :midi-channel 1))
(va (viola :midi-channel 2))
(vc (cello :midi-channel 3))))
:set-palette ’((1 ((ds3 e3 fs3 af3 bf3 c4 ef4d fs4))))
:set-map *((1 (1 11 1)))
:rthm-seq-palette *((1 ((((2 4) q e s 8))
:pitch-seq-palette ((1 2 3 4)))))
:rthm-seq-map ’((1 ((vn (1 1 1 1))
(va (111 1))
(ve (11 12.1O0DMHN
(set-rehearsal-letter mini 2 ’A)
(set-rehearsal-letter mini 3 ’2 ’(va vc))
(set-rehearsal-letter mini 4 ’Z3))

=>T
SYNOPSIS:

(defmethod set-rehearsal-letter ((sc slippery-chicken) bar-num letter
&optional players)

11.56 slippery-chicken-edit /tie

[slippery-chicken-edit | [Methods |
ARGUMENTS:

- A slippery-chicken object.

- An integer that is the number of the bar in which the tie is to be
placed.

- An integer that is the number of the note to which the tie is to be

11 SC/SLIPPERY-CHICKEN-EDIT 102

attached.
- The ID of the player whose part is to be changed.

OPTIONAL ARGUMENTS:

- A positive or negative decimal number to indicate the steepness of the
tie’s curvature.

RETURN VALUE:
Returns T.
EXAMPLE:

(let ((mini
(make-slippery-chicken
’+mini+
tensemble ’(((vn (violin :midi-channel 1))))
:set-palette ’((1 ((c4 d4 e4))))
tset-map *((1 (1 11 1)))
:rthm-seq-palette ’((1 ((((2 4) g s s (s) s))
:pitch-seq-palette ((1 1 2 3)))))
:rthm-seq-map ’((1 ((vn (1 1 1 1))))))))
(tie mini 2 1 ’vn)
(tie mini 3 2 ’vn)
(tie mini 4 2 ’vn -.5))

=T
SYNOPSIS:

(defmethod tie ((sc slippery-chicken) bar-num note-num player
&optional curvature)

11.57 slippery-chicken-edit /tie-all-last-notes-over-rests

[slippery-chicken-edit | [Methods |
ARGUMENTS:

A slippery-chicken object.

- An integer that is the first bar in which changes are to be made.
- An integer that is the last bar in which changes are to be made.
- A player ID or list of player IDs.

11 SC/SLIPPERY-CHICKEN-EDIT 103

OPTIONAL ARGUMENTS:

keyword arguments:

- :to-next-attack. T or NIL to indicate whether ties are to extend over
only full bars of rest or also over partial bars (until the next attacked
note). T = until the next attacked note. Default = T.

- :tie—next-attack. T or NIL to indicate whether the new tied notes created
should also be further extended over the next attacked note if that note
has the same pitch as the starting note of the tie. T = also tie next
attacked note if same pitch. Default = NIL.

- :auto-beam. T or NIL to indicate whether the new events should be
automatically beamed after placement. T = automatically beam.

Default = NIL.
- :last-rhythm. Default = NIL.

RETURN VALUE:
Returns NIL.
EXAMPLE:

(let ((mini
(make-slippery-chicken
’+mini+
:ensemble ’(((vn (violin :midi-channel 1))
(va (viola :midi-channel 2))
(vc (cello :midi-channel 3))))
:set-palette > ((1 ((£3 g3 a3 b3 c4 d4 f4 g4 a4 c5 d5 £5))))
tset-map ’((1 (1 1)))
:rthm-seq-palette ’((1 ((((4 4) e (e) e e (e) (e) e e)

(Gn)

(th) @
(Gn)

(Gn)

((e) e h.))

:pitch-seq-palette ((1 234567 7)))))
:rthm-seg-map ’((1 ((vn (1 1))

(va (1 1))

(ve (1 1NN
(tie-all-last-notes—over-rests mini 2 6 ’vn)
(tie-all-last-notes-over-rests mini 9 12 ’vn :auto-beam t)
(tie-all-last-notes-over-rests mini 3 5 ’(va vc) :to-next-attack nil)
(tie-all-last-notes-over-rests mini 9 12 ’vc :tie-next-attack t))

=> NIL

11

SC/SLIPPERY-CHICKEN-EDIT

SYNOPSIS:

(defmethod tie-all-last-notes-over-rests ((sc slippery-chicken)

start-bar end-bar players
&key

104

;; use up all rests until next attack or (if nil)

;53 just the rest bars?
(to-next-attack t)

;; if the next attack is the same note/chord as

;; the previous, tie to it too?
(tie-next-attack nil)
(last-rhythm nil)

(auto-beam nil))

11.58 slippery-chicken-edit /tie-over-all-rests

[slippery-chicken-edit | [Methods |
ARGUMENTS:

A slippery-chicken object.

The ID of the player whose part is to be changed.

An integer that is the number of the first bar in which notes are to be
tied over rests.

An integer that is the number of the last bar in which notes are to be
tied over rests. NB: This argument does not necessarily indicate the bar
in which the ties will stop, but rather the last bar in which a tie will
be begun; the ties created may extend into the next bar.

OPTIONAL ARGUMENTS:

keyword arguments:

:start-note. An integer that is the number of the first attacked note

(not counting rests) in the given start-bar for which ties can be placed.

:end-note. An integer that is the number of the last attacked note (not
counting rests) in the given end-bar for which ties can be placed.

NB: This argument does not necessarily indicate the note on which the
ties will stop, but rather the last not on which a tie can begin; the
ties created may extend to the next note.

:auto-beam. T or NIL to indicate whether the method should automatically
place beams for the notes of the affected measure after the ties over
rests have been created. T = automatically beam. Default = NIL.
:consolidate-notes. T or NIL to indicate whether the tied note are to be
consolidated into single rhythmic units of longer durations after the
ties over rests have been created. T = consolidate notes. Default = NIL.

11 SC/SLIPPERY-CHICKEN-EDIT 105

RETURN VALUE:
Returns NIL.
EXAMPLE:

(let ((mini
(make-slippery-chicken
’+mini+
:ensemble ’(((vn (violin :midi-channel 1))))
:set-palette ’((1 ((c4 d4 e4))))
tset-map ’((1 (1 111111)))
:rthm-seq-palette ’((1 ((((2 4) (q) e (s) s))
:pitch-seq-palette ((1 2)))))
:rthm-seq-map *((1 ((vn (1 11111 1))
(tie-over-all-rests mini ’vn 2 3 :start-note 2 :auto-beam t)
(tie-over-all-rests mini ’vn 5 6 :end-note 1 :consolidate-notes t))

=> NIL
SYNOPSIS:

(defmethod tie-over-all-rests ((sc slippery-chicken) player
start-bar end-bar
&key
(start-note 1)
(end-note 9999999)
(auto-beam nil)
(consolidate-notes nil))

11.59 slippery-chicken-edit/tie-over-rest-bars

[slippery-chicken-edit | [Methods |
ARGUMENTS:

- A slippery-chicken object.
- An integer that is the number of the bar in which the last note is to be
tied.

- An ID or list of IDs of the players whose parts are to be modified.

OPTIONAL ARGUMENTS:

keyword arguments:
- :end-bar. An integer or NIL. If an integer, this is the number of the

11

SC/SLIPPERY-CHICKEN-EDIT 106

last bar of full-rests that is to be changed to a note. This can be
helpful for tying into passages of multiple bars of full-rest.
:tie—next-attack. T or NIL to indicate whether the new tied notes created
should also be further extended over the next attacked note if that note
has the same pitch as the starting note of the tie. T = also tie next
attacked note if same pitch. Default = NIL.

:to—next-attack. T or NIL to indicate whether ties are to extend over
only full bars of rest or also over partial bars (until the next attacked
note). T = until the next attacked note. Default = T.

:auto-beam. T or NIL to indicate whether the method should automatically
place beams for the notes of the affected measure after the ties over
rests have been created. T = automatically beam. Default = NIL.
:last-rhythm. NIL or a rhythmic duration. If the latter, the last
duration of the tie will be forced to this length. Useful, for example,
when tieing into a rest bar but not filling that whole bar. Default =
NIL = fill the bar.

RETURN VALUE:

Returns NIL.

EXAMPLE:

(let ((mini

(make-slippery-chicken
’+mini+
:ensemble ’(((vn (violin :midi-channel 1))
(va (viola :midi-channel 2))
(vc (cello :midi-channel 3))))
:set-palette ’((1 ((c4 d4 e4))))
:set-map ’((1 (1 1)))
:rthm-seq-palette ’((1 ((((2 4) (@) e (s) s)
((h))
((s) e. e e)
()
((h))
((e) qgs ()
:pitch-seq-palette ((1 2 21 3 3 1)))))
:rthm-seq-map ’((1 ((vn (1 1))
(va (1 1))
(ve (2 1ONDNN
(tie-over-rest-bars mini 1 ’vn :end-bar 2)
(tie-over-rest-bars mini 3 ’va :end-bar 5)
(tie-over-rest-bars mini 3 ’(vn vc) :end-bar 6 :tie-next-attack t)
(tie-over-rest-bars mini 7 ’vc
:end-bar 9

11 SC / SLIPPERY-CHICKEN-EDIT
:to-next-attack t
:auto-beam t))

=> NIL

SYNOPSIS:

(defmethod tie-over-rest-bars ((sc slippery-chicken) bar-num players

&key (end-bar nil) ;; num of empty bars
(tie-next-attack nil)
(to—next-attack t)

(last-rhythm nil)
(auto-beam nil))

11.60 slippery-chicken-edit/tie-over-rests

[slippery-chicken-edit | [Methods |
ARGUMENTS:

A slippery-chicken object.

An integer that is the number of the bar in which the note is located.
An integer that is the number of the note within that bar which is to be
extended. This number is 1-based and also counts already tied notes.

The ID of the player whose part is to be modified.

OPTIONAL ARGUMENTS:

keyword arguments

:end-bar. An integer that is the number of the last bar into which the
tie is to extend. This can be helpful if the user wants to tie into only
the first of several comsecutive full-rest bars.

:auto-beam. T or NIL to indicate whether the method should automatically
beam the beats of the modified bars after the ties have been added.

T = automatically beam. Default = NIL.

:consolidate-notes. T or NIL to indicate whether the method should
consolidate tied notes into single rhythm units of longer duration.

T = consolidate. Default = T.

RETURN VALUE:

Returns NIL.

EXAMPLE:

107

11 SC/SLIPPERY-CHICKEN-EDIT 108

(let ((mini
(make-slippery-chicken
’+mini+
:ensemble ’(((vn (violin :midi-channel 1))))
:set-palette ’((1 ((c4 d4 e4))))
:set-map *((1 (1 1 1)))
:rthm-seq-palette ’((1 ((((2 4) (q) e (s) s)
()
((s) e. (e) &
((h))
((h))
(Ce) g s (8)))
:pitch-seq-palette ((1 2 2 3 3 1)))))
:rthm-seq-map ’((1 ((vn (1 1 1))
(tie-over-rests mini 1 2 ’vn)
(tie-over-rests mini 7 1 ’vn)
(tie-over-rests mini 9 2 ’vn :end-bar 10)
(tie-over-rests mini 13 1 ’vn :auto-beam t :consolidate-notes nil))

=> NIL
SYNOPSIS:

(defmethod tie-over-rests ((sc slippery-chicken) bar-num note-num player
&key end-bar auto-beam (consolidate-notes t))

11.61 slippery-chicken-edit /trill

[slippery-chicken-edit | [Methods |
ARGUMENTS:

A slippery-chicken object.

- The player to whose part the trill is to be added.

An integer that is the number of the bar in which the trill is to start.

- An integer that is the number of the event object in that bar on which
the trill is to be placed.

- A note-name symbol that is the pitch of the trill note.

OPTIONAL ARGUMENTS:

- An integer that is the number of the event object on which the trill span
is to stop.

- An integer that is the number of the bar in which the trill span is to
stop.

11 SC/SLIPPERY-CHICKEN-EDIT 109

RETURN VALUE:
Returns T.
EXAMPLE:

(let ((mini
(make-slippery-chicken
’+mini+
:ensemble ’(((vn (violin :midi-channel 1))))
:set-palette > ((1 ((c4 d4 e4))))
iset-map *((1 (1 111 1)))
:rthm-seq-palette *((1 ((((2 4) q. s s))
:pitch-seq-palette ((1 3 2)))))
:rthm-seq-map ’((1 ((vn (1 1 1 1 1))
(trill mini ’vn 2 1 ’ed)
(trill mini ’vn 3 1 ’e4d 3)
(trill mini ’vn 4 1 ’e4 3 5))

=> T
SYNOPSIS:

(defmethod trill ((sc slippery-chicken) player start-bar start-event trill-note
&optional end-event end-bar)

11.62 slippery-chicken-edit /unset-cautionary-accidental

[slippery-chicken-edit | [Methods |
ARGUMENTS:

- A slippery-chicken object.

- An integer that is the number of the bar in which the cautionary
accidental is to be unset.

- An integer that is the number of the note in that bar for which the

cautionary accidental is to be unset.

The ID of the player whose part is to be changed.

OPTIONAL ARGUMENTS:

- T or NIL to indicate whether to unset the cautionary accidental for the
written part only (for transposing instruments).
T = written only. Default = NIL.

12 SC/UTILITIES 110

RETURN VALUE:
Returns NIL.
EXAMPLE:

(let ((mini
(make-slippery-chicken
’+mini+
:ensemble ’(((cl (b-flat-clarinet :midi-channel 1))
(vn (violin :midi-channel 2))))
:set-palette ’((1 ((cs4 ds4 £s4))))
:set-map ’((1 (1 1))
:rthm-seq-palette *((1 ((((4 4) ee e e e e e e))
:pitch-seq-palette ((1 2321 2 3 2)))))
:rthm-seg-map ’((1 ((cl (1 1))
(vn (1 1))))))))
(respell-notes mini)
(unset-cautionary-accidental mini 2 5 ’vn)
(unset-cautionary-accidental mini 2 7 ’cl t)
(cmn-display mini :respell-notes nil))

SYNOPSIS:

(defmethod unset-cautionary-accidental ((sc slippery-chicken) bar-num note-num
player &optional written)

12 sc/utilities

[Modules |
NAME:

utilities

File: utilities.lsp

Class Hierarchy: none: no classes defined

Version: 1.0.0-beta2

Project: slippery chicken (algorithmic composition)

Purpose: Various helper functions of a general nature.

12 SC/UTILITIES

Author: Michael Edwards: m@michael-edwards.org
Creation date: June 24th 2002
$$ Last modified: 17:47:02 Thu May 17 2012 BST

SVN ID: $Id: utilities.lsp 1982 2012-05-24 15:35:54Z medward2 $

12.1 utilities/all-members

[utilities | [Functions |
ARGUMENTS:

- A list in which the members of the second argument will be sought.
- A list whose members will be sought in the first argument.

OPTIONAL ARGUMENT
- A comparison function.

RETURN VALUE:
T or NIL.
EXAMPLE:
(all-members (1 23456 7) (1 237))
=> T
SYNOPSIS:

(defun all-members (list test-list &optional (test #’equal))

12.2 utilities/almost-zero

[utilities | [Functions |
ARGUMENTS:

- A number.

OPTIONAL ARGUMENTS:

111

12 SC/UTILITIES 112

- A number that is a user-specified difference for the comparison test.
RETURN VALUE:

T if the number is within the tolerance difference to zero, otherwise NIL.
EXAMPLE:

(almost-zero 0.0000007)

= T

SYNOPSIS:

(defun almost-zero (num &optional (tolerance 0.000001))

12.3 utilities/amp2db

[utilities | [Methods |
ARGUMENTS:

- A decimal number between >0.0 and 1.0.
RETURN VALUE:

A decimal number that is a value in decibel.
EXAMPLE:

(amp2db 0.3)

=> -10.457575

SYNOPSIS:

(defmacro amp2db (amp)

12.4 utilities/amplitude-to-dynamic

[utilities | [Functions |
ARGUMENTS:

12 SC/UTILITIES

- A decimal number between 0.0 and 1.0.
OPTIONAL ARGUMENTS:

- T or NIL to indicate whether to print a warning if the specified
amplitude is <0.0 or >1.0. T = warn. Default = T.

RETURN VALUE:

A symbol that is a dynamic level.
EXAMPLE:

(amplitude-to-dynamic 0.3)

=> PP

SYNOPSIS:

(defun amplitude-to-dynamic (amp &optional (warn t))

12.5 utilities/between

[utilities | [Functions |
ARGUMENTS:

- A first, lower, number.
- A second, higher, number.

NB: The first number must always be lower than the second.

OPTIONAL ARGUMENTS:

- T or NIL to indicate whether the random seed should be fixed.
- If fixed-random is set to T, a function must be given for <restart> to
reset the seed (see below)

RETURN VALUE:

An integer if both numbers are integers, or a float if one or both are
decimal numbers.

EXAMPLE:

113

12 SC/UTILITIES 114

;55 Using the defaults. This will produce a different result each time.
(loop repeat 10 collect (between 1 100))
=> (43 63 26 47 28 2 99 93 66 23)
;55 Setting fixed-random to T and using zerop to reset the random when i is O
(loop repeat 5
collect (loop for i from O to 9 collect (between 1 100 t (zerop i))))

=> ((93 2 38 81 43 19 70 18 44 26) (93 2 38 81 43 19 70 18 44 26)

(93 2 38 81 43 19 70 18 44 26) (93 2 38 81 43 19 70 18 44 26)

(93 2 38 81 43 19 70 18 44 26))
SYNOPSIS:

(defun between (low high &optional fixed-random restart)

12.6 utilities/combine-into-symbol

[utilities | [Functions |
ARGUMENTS:

- A sequence of elements.
RETURN VALUE:

A symbol as the primary value, with the length of that symbol as a
secondary value.

EXAMPLE:
(combine-into-symbol "test" 1 ’a)
=> TEST1A, 6
SYNOPSIS:

(defun combine-into-symbol (&rest params)

12.7 utilities/db2amp

[utilities | [Methods |
ARGUMENTS:

12 SC/UTILITIES 115

- A number that is a value in decibel.
RETURN VALUE:

A decimal number between >0.0 and 1.0.
EXAMPLE:

(db2amp -3)

=> 0.70794576

SYNOPSIS:

(defmacro db2amp (db)

12.8 utilities/decimal-places

[utilities | [Functions |
DATE:

19-Mar-2012

DESCRIPTION
Round the given number to the specified number of decimal places.

ARGUMENTS:

- A number.

- An integer that is the number of decimal places to which to round the
given number.

RETURN VALUE:

A decimal number.

EXAMPLE:

(decimal-places 1.1478349092347 2)

=>1.15

SYNOPSIS:

(defun decimal-places (num places)

12 SC/UTILITIES 116

12.9 utilities/dynamic-to-amplitude
[utilities | [Functions |
ARGUMENTS:
- A symbol that is a dynamic level between niente and fff.

OPTIONAL ARGUMENTS:

- T or NIL to indicate whether to print a warning when the symbol specified
is not recognized as a dynamic. T = warn. Default = T.

RETURN VALUE:

A decimal number between 0.0 and 1.0.
EXAMPLE:

(dynamic-to-amplitude ’fff)

=> 0.9

SYNOPSIS:

(defun dynamic-to-amplitude (dynamic &optional (warn t))

12.10 utilities/econs
[utilities | [Functions |
ARGUMENTS:

- A list.
- An element to add to the end of the list.

RETURN VALUE:
A new list.
EXAMPLE:

(econs ’(1 2 3 4) 5)
=> (12 345)
SYNOPSIS:

(defun econs (list new-back)

12 SC/UTILITIES 117

12.11 utilities/env-plus

[utilities | [Functions |
ARGUMENTS:

- An envelope in the form of a list of break-point pairs.
- A number that is the amount by which all y values of the given envelope
are to be increased.

RETURN VALUE:

A list of break-point pairs.

EXAMPLE:

(env-plus (0 0 25 11 50 13 75 19 100 23) 7.1)
=> (0 7.1 25 18.1 50 20.1 75 26.1 100 30.1)

SYNOPSIS:

(defun env-plus (env add)

12.12 utilities/env-symmetrical

[utilities | [Functions |
ARGUMENTS:

- An envelope in the form of a list of break-point pairs.
OPTIONAL ARGUMENTS:

- A number that is the center value around which the values of the
new list are to be symmetrical.

- A number that is to be the minimum value for the y values returned.

- A number that is to be the maximum value for the y values returned.

RETURN VALUE:
An envelope in the form of a list of break-point pairs.

EXAMPLE:

12 SC/UTILITIES 118
;535 Default center is 0.5

(env-symmetrical (0 0 256 11 50 13 75 19 100 23))

=> (0 1.0 25 -10.0 50 -12.0 75 -18.0 100 -22.0)

;5 Specifying a center of O
(env-symmetrical (0 0 256 11 50 13 75 19 100 23) 0)

=> (0 0.0 25 -11.0 50 -13.0 75 -19.0 100 -23.0)

;55 Specifying minimum and maximum y values for the envelope returned
(env-symmetrical (0 0 25 11 50 13 75 19 100 23) 0 -20 -7)

=> (0 -7 256 -11.0 50 -13.0 75 -19.0 100 -20)
SYNOPSIS:
(defun env-symmetrical (env &optional (centre .5)

(min most-negative-double-float)
(max most-positive-double-float))

12.13 utilities/equal-within-tolerance

[utilities | [Functions |
ARGUMENTS:

- A first number.
- A second number.

OPTIONAL ARGUMENTS:

- A decimal value that is the maximum difference allowed between the two
numbers that will still return T. Default = 0.000001dO.

RETURN VALUE:

T if the two tested numbers are equal within the specified tolerance,
otherwise NIL.

EXAMPLE:

;; An example of floating-point error
(loop for i from 0.0 below 1.1 by 0.1 collect i)

12 SC/UTILITIES

=> (0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.70000005 0.8000001 0.9000001 1.0000001)

;5 Using =

(loop for i from 0.0 below 1.1 by 0.1
for j in (0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0)
collect (= i j))

=>(TTTTTTT NIL NIL NIL NIL)

;; Using equal-within-tolerance

(loop for i from 0.0 below 1.1 by 0.1
for j in (0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0)
collect (equal-within-tolerance i j))

= (TTTTTTTTTTT

SYNOPSIS:

(defun equal-within-tolerance (a b &optional (tolerance 0.000001d0))

12.14 utilities/factor

[utilities | [Functions |
ARGUMENTS:

- A number that will be tested to see if it is a multiple of the second
number.
- A second number that is the base number for the factor test.

RETURN VALUE:

T if the first number is a multiple of the second number, otherwise NIL.
EXAMPLE:

(factor 14 7)

= T

SYNOPSIS:

(defun factor (num fac)

119

12 SC/UTILITIES 120

12.15 utilities/flatten

[utilities | [Functions |
ARGUMENTS:

- A list of nested lists.

RETURN VALUE:

A flat list.

EXAMPLE:

(flatten ’((1 (2 3 4) (5 (6 7) (8 9 10 (11) 12)) 13) 14 15 (16 17)))
=>(123456789 10 11 12 13 14 15 16 17)

SYNOPSIS:

(defun flatten (nested-list)

12.16 utilities/force-length

[utilities | [Functions |
DATE:

03-FEB-2011

DESCRIPTION

Create a new a list of a specified new length by adding or removing items
at regular intervals from the original list. If adding items and the list
contains numbers, linear interpolation will be used, but only between two
adjacent items; i.e. not with a partial increment.

NB: The function can only create new lists that have a length between 1 and
1 less than double the length of the original list.

ARGUMENTS:

- A flat list.

- A number that is the new length of the new list to be derived from the
original list. This number must be a value between 1 and 1 less than
double the length of the original list.

12 SC/UTILITIES 121

RETURN VALUE: EXAMPLE:

;53 Shortening a list
(force-length (loop for i from 1 to 100 collect i) 17)

=> (1 7 13 20 26 32 39 45 51 57 63 70 76 82 89 95 100)

;55 Lengthening a list
(force-length (loop for i from 1 to 100 collect i) 199)

=>(11.522533.544.555.566.577.588.599.510 10.5 11 11.5 12

12.5 13 13.5 14 14.5 15 15.5 16 16.5 17 17.5 18 18.5 19 19.5 20 20.5 21
21.5 22 22.5 23 23.5 24 24.5 25 25.5 26 26.5 27 27.5 28 28.5 29 29.5 30
30.5 31 31.5 32 32.5 33 33.5 34 34.5 35 35.5 36 36.5 37 37.5 38 38.5 39
39.5 40 40.5 41 41.5 42 42.5 43 43.5 44 44.5 45 45.5 46 46.5 47 47.5 48
48.5 49 49.5 50 50.5 51 51.5 52 52.5 53 53.5 54 54.5 55 55.5 56 56.5 57
57.5 58 58.5 59 59.5 60 60.5 61 61.5 62 62.5 63 63.5 64 64.5 65 65.5 66
66.5 67 67.5 68 68.5 69 69.5 70 70.5 71 71.5 72 72.5 73 73.5 74 74.5 75
75.5 76 76.5 77 77.5 78 78.5 79 79.5 80 80.5 81 81.5 82 82.5 83 83.5 84
84.5 85 85.5 86 86.5 87 87.5 88 88.5 89 89.5 90 90.5 91 91.5 92 92.5 93
93.5 94 94.5 95 95.5 96 96.5 97 97.5 98 98.5 99 99.5 100)
SYNOPSIS:

(defun force-length (list new-len)

12.17 utilities/get-harmonics

[utilities | [Functions |
ARGUMENTS:

- A number that is the fundamental frequency in Hertz.
OPTIONAL ARGUMENTS:

keyword arguments

- :start-at. An integer that is the number of the first harmonic partial to
return. Default = 1.

- :min-freq. A number that is the lowest frequency in Hertz to
return. Default = 20.

- :max-freq. A number that is the highest frequency in Hertz to
return. Default = 20000.

RETURN VALUE:

12 SC/UTILITIES 122

A list of numbers that are the frequencies in Hertz of harmonic partials
above the same fundamental frequency.

EXAMPLE:

;55 Get the first 15 harmonic partials above a fundamental pitch of 64 Hertz,
;55 starting with partial 2, and specifying an upper cut-off of 1010 Hz.

(get-harmonics 63 :start-at 2 :max-freq 1010)
=> (126 189 252 315 378 441 504 567 630 693 756 819 882 945 1008)

SYNOPSIS:

(defun get-harmonics (fundamental &key (start-at 1) (min-freq 20)
(max-freq 20000))

12.18 utilities/get-sublist-indices

[utilities | [Functions |
ARGUMENTS:

- A list of lists.

RETURN VALUE:

A list of integers that are the indices of the sublists.

EXAMPLE:

(get-sublist-indices *((1 2) (83 4 5 6) (7 8 9) (10 11 12 13 14) (15)))
=> (0 2 6 9 14)

SYNOPSIS:

(defun get-sublist-indices (list)

12.19 utilities/get-sublist-lengths

[utilities | [Functions |
ARGUMENTS:

12 SC/UTILITIES

- A list of lists.
OPTIONAL ARGUMENTS:

- T or NIL to indicate whether to first remove zeros caused by empty
sublists from the result.

RETURN VALUE:
A list of integers.
EXAMPLE:

;5 Straightforward usage allows zeros in the result
(get-sublist-lengths ’((1 2) (3 4 56) (7 8 9) (10 11 12 13 14))

=> (24350

;; Setting the optional argument to T removes zeros from the result
(get-sublist-lengths >((1 2) (8345 6) (7 89) (10 11 12 13 14) () t)
=> (2 4 35)

SYNOPSIS:

(defun get-sublist-lengths (list &optional (remove-zeros nil))

12.20 utilities/hailstone

[utilities | [Functions |
ARGUMENTS:

- A number to start with.
RETURN VALUE:

A list of the results collected from each iteration starting with the
specified number and ending with one.

EXAMPLE:
(hailstone 11)

=> (11 34 17 52 26 13 40 20 10 5 16 8 4 2 1)

123

12 SC/UTILITIES 124

SYNOPSIS:

(defun hailstone (n)

12.21 utilities/hz2ms

[utilities | [Functions |
ARGUMENTS:

- A number that is a Hertz frequency.
RETURN VALUE:

A number that is the millisecond equivalent of the specified Hertz
frequency.

EXAMPLE:
(hz2ms 261.63)
=> 3.8221915
SYNOPSIS:

(defun hz2ms (hertz)

12.22 utilities/interpolate

[utilities | [Functions |
ARGUMENTS:

- A number that is the point within the specified envelope for which to
return the interpolated value.
- A list of break-point pairs.

OPTIONAL ARGUMENTS:

keyword arguments:

- :scaler. A number that is the factor by which to scale the values of
the break-point pairs in the given envelope before retrieving the
interpolated value. Default = 1.

- :exp. A number that is the exponent to which the result should be

12 SC/UTILITIES 125

raised. Default = 1.

- :warn. T or NIL to indicate whether the method should print a warning if
the specified point is outside of the bounds of the x-axis specified in
the list of break-point pairs. T = warn. Default = T.

RETURN VALUE: EXAMPLE:

;55 Using the defaults
(interpolate 50 ’(0 0 100 1))

=> 0.5

;55 Specifying a different scaler
(interpolate 50 ’(0 O 100 1) :scaler 2)

=> 1.0

;53 Specifying a different exponent by which the result is to be raised
(interpolate 50 ’(0 0 100 1) :exp 2)

=> 0.25
SYNOPSIS:

(defun interpolate (point env &key (scaler 1) (exp 1) (warn t))

12.23 utilities/list-to-string

[utilities | [Functions |
ARGUMENTS:

- A list.

OPTIONAL ARGUMENTS:

- A string that will serve as a separator between the elements.
Default = " ".

- T or NIL to indicate whether a list value of NIL is to be returned as
"NIL" or NIL. T = "NIL" as a string. Default = T.

RETURN VALUE: EXAMPLE:

;55 Using defaults
(list-to-string (1 2 3 4 5))

12 SC/UTILITIES 126

=>"123 45"

;33 Specifying a different separator
(list-to-string (1 2 3 4 5) "-")

=> "1-2-3-4-5"

;53 A NIL list returns "NIL" as a string by default
(list-to-string NIL)

=> "pil"
;33 Setting the second optional argument to NIL returns a NIL list as NIL
;35 rather than as "NIL" as a string

(list-to-string NIL "" nil)

=> NIL

SYNOPSIS:

(defun list-to-string (list &optional (separator " ") (nil-as-string t))

12.24 utilities/logarithmic-steps

[utilities | [Functions |
ARGUMENTS:
- A number that is the starting value in the resulting list.
- A number that is the ending value in the resulting list.
- An integer that will be the length of the resulting list - 1.

OPTIONAL ARGUMENTS:

- A number that will be used as the exponent when determining the
exponential interpolation between values. Default = 2.

RETURN VALUE:
A list of numbers.
EXAMPLE:

(logarithmic-steps 1 100 19)

12 SC/UTILITIES 127

=> (1.0 1.3055556 2.2222223 3.75 5.888889 8.638889 12.0 15.972222 20.555555
25.75 31.5565656565 37.97222 45.0 52.63889 60.88889 69.75 79.22222 89.30556
100.0)

SYNOPSIS:

(defun logarithmic-steps (low high num-steps &optional (exponent 2))

12.25 utilities/middle

[utilities | [Functions |
ARGUMENTS:

- A first number.
- A second number.

RETURN VALUE:
A number.
EXAMPLE:

(middle 7 92)

=> 49.5
SYNOPSIS:

(defun middle (lower upper)

12.26 utilities/mins-secs-to-secs

[utilities | [Functions |
ARGUMENTS:

- A two-item list of integers in the form ’(minutes seconds).
RETURN VALUE:

A decimal number that is a number in seconds.

12 SC/UTILITIES

EXAMPLE:
(mins-secs-to-secs ’(2 1))
=> 121.0

SYNOPSIS:

(defun mins-secs-to-secs (list)

12.27 utilities/move-elements
[utilities | [Functions |
DATE:

02-Mar-2011

DESCRIPTION
Move the specified elements from one list (if they are present in that
list) to another, deleting them from the first.

ARGUMENTS:

- A list of elements that are the elements to be moved.
- A list from which the specified elements are to be moved and deleted.
- A list to which the specified elements are to be moved.

OPTIONAL ARGUMENTS:

- A predicate by which to test that the specified elements are equal to
elements of the source list. Default = #’eq.

RETURN VALUE:

Two values: A first list that is the source list after the items have been
moved; a second list that is the target list after the items have been
moved.

EXAMPLE:

(move-elements (3 58) (1 23456789) (abcde))
=>(124679), (853ABCDE)

SYNOPSIS:

(defun move-elements (what from to &optional (test #’eq))

128

12 SC/UTILITIES 129

12.28 utilities/move-to-end

[utilities | [Functions |

DATE:

22-May-2011

DESCRIPTION

Move a specified element of a given list to the end of the list, returning

the new list.

NB: If the element exists more than once in the given list, all but on of
the occurrences will be removed and only one of them will be placed at
the end.

ARGUMENTS:

- An item that is an element of the list that is the second argument.
- A list.

RETURN VALUE:
A list.
EXAMPLE:

;55 All unique items
(move-to-end 2 (1 2 3 4 5))

=> (13452

;55 Duplicate items
(move-to-end 2 (1 2 3 2 4 2 5))

=> (1345 2)
SYNOPSIS:

(defun move-to-end (what list &optional (test #’eql))

12.29 utilities/nconc-sublists

[utilities | [Functions |
ARGUMENTS:

12 SC/UTILITIES 130

A 1list of lists.
RETURN VALUE:
A list of lists.
EXAMPLE:

(nconc-sublists ’(((1 2) (a b) (cat dog))
((3 4) (c d) (bird fish))
((5 6) (e £) (pig cow))))

=>((123456) (ABCDEF) (CAT DOG BIRD FISH PIG COW))
SYNOPSIS:

(defun nconc-sublists (lists)

12.30 utilities/nearest-power-of-2

[utilities | [Functions |
ARGUMENTS:

- A number.
RETURN VALUE:

An integer that is a power of two.
EXAMPLE:
(nearest-power-of-2 31)
=> 16
(nearest-power-of-2 32)
=> 32
(nearest-power-of-2 33)
=> 32
SYNOPSIS:

(defun nearest-power-of-2 (num)

12 SC/UTILITIES 131

12.31 utilities/octave-freqs

[utilities | [Functions |
ARGUMENTS:

- A first number that is a frequency in Hertz.
- A second number that is a frequency in Hertz.

OPTIONAL ARGUMENTS:
- T or NIL to indicate whether identical frequencies ("unison") are also

to be considered octave transpositions of the same pitch class.
T = unisons are also octaves. Default = T.

RETURN VALUE:

T or NIL.

EXAMPLE:

(octave-fregs 261.63 2093.04)
=T

(octave-freqs 261.63 3000.00)
=> NIL

(octave-freqs 261.63 261.63)
=> T

(octave-freqs 261.63 261.63 nil)
=> NIL

SYNOPSIS:

(defun octave-freqs (freql freq2 &optional (unison-also t))

12.32 utilities/parse-audacity-label-file-for-loops

[utilities | [Functions |

ARGUMENTS: OPTIONAL ARGUMENTS: RETURN VALUE: EXAMPLE: SYN-
OPSIS:

12 SC/UTILITIES 132
(defun parse-audacity-label-file-for-loops (label-file)

12.33 utilities/parse-wavelab-marker-file-for-loops

[utilities | [Functions |

ARGUMENTS: OPTIONAL ARGUMENTS: RETURN VALUE: EXAMPLE: SYN-
OPSIS:

(defun parse-wavelab-marker-file-for-loops
(marker-file &key (sampling-rate 44100) (max-length 1.0))

12.34 utilities/partial-freqs

[utilities | [Functions |
DATE:

13-Dec-2011
DESCRIPTION

A Boolean test to determine whether either of two specified frequencies
can be considered a harmonic partial of the other.

ARGUMENTS:

- A first frequency in Hertz.
- A second frequency in Hertz.

OPTIONAL ARGUMENTS:

- T or NIL to indicate whether identical frequencies ("unison") are also to
be considered partials of each other. T = unison are partials.
Default = T.

RETURN VALUE:

T if one of the frequencies has the ratio of a harmonic partial to the
other, otherwise NIL.

EXAMPLE:

(partial-freqs 300 900)

12 SC/UTILITIES 133

=T

(partial-freqs 300 700)

=> NIL

(partial-freqs 300 300)

=> T

(partial-freqs 300 300 nil)
=> NIL

SYNOPSIS:

(defun partial-freqs (freql freq2 &optional (unison-also t))

12.35 utilities/power-of-2

[utilities | [Functions |
ARGUMENTS:

- A number.
RETURN VALUE:

Two values: T or NIL for the test and a decimal number that is the
logarithm of the specified number to base 2.

EXAMPLE:
(power-of-2 16)
=> T, 4.0
(power-of-2 17.3)
=> NIL, 4.1127
SYNOPSIS:

(defun power-of-2 (float)

12 SC/UTILITIES 134

12.36 utilities/pts2cm

[utilities | [Functions |
ARGUMENTS:

- A number.
RETURN VALUE:
A number.
EXAMPLE:

(pts2cm 150)

=> 5.2916665
SYNOPSIS:

(defun pts2cm (points)

12.37 utilities/random-amount

[utilities | [Functions |
ARGUMENTS:

A number.

OPTIONAL ARGUMENTS:

A number that will be a percent of the given number.
RETURN VALUE:

A random positive or negative number.

EXAMPLE:

;5; Using the default will return numbers within a 5% span of the given number,
;55 centering around zero. With 100 that means between -2.5 and +2.5.
(loop repeat 10 collect (random-amount 100))

12 SC/UTILITIES 135

=> (0.7424975 -1.4954442 -1.7126495 1.5918689 -0.43478793 -1.7916341 -1.9115914
0.8541988 0.057197176 2.0713913)

;3 Specifying 10% of 80 will return random numbers between -4.0 and +4.0
(loop repeat 10 collect (random-amount 80 10))

=> (-0.66686153 3.0387697 3.4737322 -2.3753185 -0.8495751 -0.47580242
-0.25743783 -1.1395472 1.3560238 -0.5958566)

SYNOPSIS:

(defun random-amount (number &optional (percent 5))

12.38 utilities/random-from-list

[utilities | [Functions |
ARGUMENTS:

- A list.

OPTIONAL ARGUMENTS:

- An integer can be passed stating the length of the list, for more
efficient processing. NB: There is no check to ensure this number is
indeed the length of the list. If the number is less than the length of
the list, only elements from the first part of the list will be
returned. If it is greater than the length of the list, the method may
return NIL.

RETURN VALUE:

An element from the specified list.
EXAMPLE:

(random-from-list ’(3 5 7 11 13 17 19 23 29))
=> 13

SYNOPSIS:

(defun random-from-list (list &optional list-length) ; for efficiency

12 SC/UTILITIES 136

12.39 utilities/randomise

[utilities | [Functions |

ARGUMENTS:
- A number.
OPTIONAL ARGUMENTS:

- A number that is a percentage value, such that any random number returned
will be within that percentage of the original number’s value.
Default = 5.

RETURN VALUE:
A decimal number.
EXAMPLE:

(loop repeat 10 collect (randomise 100))

=> (99.413795 99.15346 98.682014 100.76199 97.74929 99.05693 100.59494 97.96452
100.42091 100.01329)

SYNOPSIS:

(defun randomise (number &optional (percent 5))

12.40 utilities/read-from-file

[utilities | [Functions |
ARGUMENTS:

- A string that is a file name including directory path and extension.
RETURN VALUE:

The Lisp expression contained in the file.

EXAMPLE:

(read-from-file "/path/to/lisp-lorem-ipsum.txt")

12 SC/UTILITIES 137

=> (LOREM IPSUM DOLOR SIT AMET CONSECTETUR ADIPISCING ELIT CRAS CONSEQUAT
CONVALLIS JUSTO VITAE CONSECTETUR MAURIS IN NIBH VEL EST TEMPUS LOBORTIS
SUSPENDISSE POTENTI SED MAURIS MASSA ADIPISCING VITAE DIGNISSIM CONDIMENTUM
VOLUTPAT VEL FELIS FUSCE AUGUE DUI PULVINAR ULTRICIES IMPERDIET SED
PHARETRA EU QUAM INTEGER IN VULPUTATE VELIT ALIQUAM ERAT VOLUTPAT VIVAMUS
SIT AMET ORCI EGET EROS CONSEQUAT TINCIDUNT NUNC ELEMENTUM ADIPISCING
LOBORTIS MORBI AT LOREM EST EGET MATTIS ERAT DONEC AC RISUS A DUI MALESUADA
LOBORTIS AC AT EST INTEGER AT INTERDUM TORTOR VIVAMUS HENDRERIT CONSEQUAT
AUGUE QUISQUE ALIQUAM TELLUS NEC VESTIBULUM LOBORTIS RISUS TURPIS LUCTUS
LIGULA IN BIBENDUM FELIS SEM PULVINAR DOLOR VIVAMUS RHONCUS NISI GRAVIDA
PORTA VULPUTATE IPSUM LACUS PORTA RISUS A VULPUTATE MAGNA JUSTO A EST)

SYNOPSIS:

(defun read-from-file (file)

12.41 utilities/reflect-list

[utilities | [Functions |
ARGUMENTS:

- A list or numbers.
RETURN VALUE:

A list of numbers.
EXAMPLE:

(reflect-list (1 4359627 88 9))

=>(96751483221)
SYNOPSIS:

(defun reflect-list (list)

12.42 utilities/remove-all

[utilities | [Functions |
ARGUMENTS:

12 SCUQ]TYLITTES 138
- A first list that is the list of items to remove.

- A second list that is the original list.

OPTIONAL ARGUMENTS:

- A predicate for testing equality between the elements of the two lists.
Default = #’eq.

RETURN VALUE:

A list.

EXAMPLE:

(remove-all (3 5 8 13) (1 23456789 10 11 12 13))
=> (124679 10 11 12)

SYNOPSIS:

(defun remove-all (rm-list list &optional (test #’ eq))

12.43 utilities/remove-elements

[utilities | [Functions |
ARGUMENTS:
- A list.
- An integer that is the O-based position within that list that will be the

first element to be removed.
- An integer that is the number of elements to remove.

RETURN VALUE:

A list.

EXAMPLE:

(remove-elements (1 23456 7) 2 4)
=> (127)

SYNOPSIS:

(defun remove-elements (list start how-many)

12 SC/UTILITIES

12.44 utilities/remove-more

[utilities | [Functions |
ARGUMENTS:

- A list.

- A pizzicate with which to test the presence of the specified elements.
- A sequence of elements to be removed from the given list.

RETURN VALUE:

A list.

EXAMPLE:

(remove-more (1 2345556 778) #=57 2)

=> (13468)

SYNOPSIS:

(defun remove-more (list test &rest remove)

12.45 utilities/repeat-env

[utilities | [Functions |
ARGUMENTS:

- An envelope in the form of a list of break-point pairs.
- An integer that is the number of times the elements of the given envelope
should be repeated in the new list.

OPTIONAL ARGUMENTS:

- T or NIL to indicate whether every second repetition of the original
envelope should be returned in reverse order.
T = reverse. Default = NIL.

RETURN VALUE:

- A new envelope in the form of a list of break-point pairs.

EXAMPLE:

139

12 SC/UTILITIES 140

(repeat-env (0 1 50 2 100 3) 3)

=> (0.0 1 16.666666 2 33.333332 3 34.333332 1 50.0 2 66.666664 3 67.666664 1
83.33333 2 100.0 3)

(repeat-env ’(0 1 50 2 100 3) 3 t)
=> (0.0 1 16.666666 2 33.333332 3 50.0 2 66.666664 1 83.33333 2 100.0 3)
SYNOPSIS:

(defun repeat-env (env num-times &optional reflected)

12.46 utilities/replace-elements

[utilities | [Functions |

ARGUMENTS:

- A list.

- An integer that is first position of the segment of the original list to
be replaced.

- An integer that is the last position of the segment of the original list
to be replaced.

- A list that is to replace the specified segment of the original
list. This list can be of a different length than that of the segment
of the original specified by the start and end positioms.

RETURN VALUE:

A list.

EXAMPLE:

(replace-elements (1 2 3456 7 8 9) 37 ’(dog cat goldfish))

=> (1 2 3 DOG CAT GOLDFISH 9)

SYNOPSIS:

(defun replace-elements (list start end new)

12.47 utilities/reverse-env

[utilities | [Functions |

12 SC/UTILITIES 141

ARGUMENTS:

- An envelope in the form of a list of break-point pairs.
RETURN VALUE:

An envelope in the form of a list of break-point pairs.
EXAMPLE:

(reverse-env ’(0 0 25 11 50 13 75 19 100 23))

=> (0 23 25 19 50 13 75 11 100 0)

SYNOPSIS:

(defun reverse-env (env)

12.48 utilities/round-if-close

[utilities | [Functions |
ARGUMENTS:

- A decimal number.
OPTIONAL ARGUMENTS:

- If the given number is this amount or less than the nearest whole number,
round the given number to the nearest whole number.

RETURN VALUE:

If the given number is within the tolerance, return the number, otherwise
return the nearest whole number.

EXAMPLE:
(round-if-close 1.999998)
=> 1.999998
(round-if-close 1.999999)

=> 2

12 SC/UTILITIES 142

SYNOPSIS:

(defun round-if-close (num &optional (tolerance 0.000001))

12.49 utilities/scale-env

[utilities | [Functions |
ARGUMENTS:

- An envelope in the form of a list of break-point pairs.
- A number that is the factor by which the y values (data segment of the
break-point pairs) are to be scaled.

OPTIONAL ARGUMENTS:

keyword arguments:

- :y-min. A number that is the minimum value for all y values after
scaling.

- :y-max. A number that is the maximum value for all y values after
scaling.

- :x-scaler. A number that is the factor by which to scale the x-axis
values of the break-point pairs.

- :x-min. A number that is the minimum value for all x values after
scaling. NB: This optional argument can only be used if a value has been
specified for the :x-scaler.

- :x-max. A number that is the maximum value for all x values after
scaling. NB: This optional argument can only be used if a value has been
specified for the :x-scaler.

RETURN VALUE:
An envelope in the form of a list of break-point pairs.

EXAMPLE:

;33 Scaling only the y values.
(scale-env ’(0 53 25 189 50 7 75 200 100 3) 0.5)

=> (0 26.5 25 94.5 50 3.5 75 100.0 100 1.5)

;53 Scaling the y values and setting a min and max for those values
(scale-env ’(0 53 25 189 50 7 75 200 100 3) 0.5 :y-min 20 :y-max 100)

=> (0 26.5 25 94.5 50 20 75 100 100 20)

12 SC/UTILITIES 143

;55 Scaling only the x-axis values
(scale-env ’(0 53 25 189 50 7 75 200 100 3) 1.0 :x-scaler 2)

=> (0 53.0 50 189.0 100 7.0 150 200.0 200 3.0)

;35 Scaling the x values and setting a min and max for those values
(scale-env ’(0 53 25 189 50 7 75 200 100 3) 1.0 :x-scaler 2 :x-min 9 :x-max 90)

=> (9 53.0 50 189.0 90 7.0 90 200.0 90 3.0)

SYNOPSIS:

(defun scale-env (env y-scaler &key x-scaler
(x-min most-negative-double-float)
(y-min most-negative-double-float)

(x-max most-positive-double-float)
(y-max most-positive-double-float))

12.50 utilities/secs-to-mins-secs

[utilities | [Functions |

ARGUMENTS: OPTIONAL ARGUMENTS: RETURN VALUE: EXAMPLE: SYN-
OPSIS:

(defun secs-to-mins-secs (seconds &key (separator ":") (same-width nil))

12.51 utilities/semitones

[utilities | [Functions |
ARGUMENTS:

- A number of semitones.

OPTIONAL ARGUMENTS:

- A number that is the factor required to transpose by an octave.
Default = 2.0.

- A number that is the number of semitones per octave. Default = 12.

RETURN VALUE:

A number.

12 SC/UTILITIES 144

EXAMPLE:

;55 Usage with default values
(semitones 3)

=> 1.1892071

;553 Specifying a different number of semitones per octave
(semitones 3 2.0 13)

=> 1.1734605

;53 Specifying a different factor for transposing by an octave
(semitones 3 4.0)

=> 1.4142135

;33 Fractional semitones are allowed
(semitones 3.72)

=> 1.2397077

;55 Negative semitones are also allowed
(semitones -3.72)

=> 0.80664176
SYNOPSIS:

(defun semitones (st &optional (octave-size 2.0) (divisions-per-octave 12))

12.52 utilities/setf-last

[utilities | [Functions |
ARGUMENTS:

- A list.
- The new last element of that list.

RETURN VALUE:
Returns the new last element.

EXAMPLE:

12 SC/UTILITIES 145

(let ((1 °(1 2 3 4 5)))
(setf-last 1 ’dog)
D)
=> (1 2 3 4 DOG)
SYNOPSIS:

(defmacro setf-last (list new-last)

12.53 utilities/sort-symbol-list

[utilities | [Functions |
ARGUMENTS:

A list of symbols.

RETURN VALUE:

The same list of symbols sorted alphabetically ascending, case-insensitive.
EXAMPLE:

(sort-symbol-list ’(Lorem ipsum dolor sit amet consectetur adipiscing))

=> (ADIPISCING AMET CONSECTETUR DOLOR IPSUM LOREM SIT)

SYNOPSIS:

(defun sort-symbol-list (list)

12.54 utilities/splice

[utilities | [Functions |
ARGUMENTS:

- A list that contains the elements to be inserted into the second list.

- A list into which the elements of the first argument are to be inserted.

- An integer that is the index within the second list where the elements
are to be inserted.

RETURN VALUE:

12 SC/UTILITIES 146

- A list.

EXAMPLE:

(splice ’(dog cat goldfish) (1 234567 89) 3)
=> (1 2 3 DOG CAT GOLDFISH 4 5 6 7 8 9)
SYNOPSIS:

(defun splice (elements into-list where)

12.55 utilities/split-groups

[utilities | [Functions |
ARGUMENTS:

- A number that is to be split into repetitions of a specified smaller
number (the second argument) .

- The number that is to be the repeating item in the new list. This number
must be smaller than the first number.

RETURN VALUE:

A list consisting of repetitions of the specified number, with the last
element being any possible remainder.

EXAMPLE:
(split-groups 101 17)
=> (17 17 17 17 17 16)

SYNOPSIS:

(defun split-groups (num divider)

12.56 utilities/split-into-sub-groups

[utilities | [Functions |
ARGUMENTS:

12 SC/UTILITIES 147

- A flat list.
- A list of integers that are the lengths of the consecutive subgroups
into which the original list is to be divided.

RETURN VALUE:
A list of lists.
EXAMPLE:

;5 Used with a list of subgroup lengths whose sum is equal to the length of the
;; original list

(split-into-sub-groups (1 23456 7 89 10) (2 2 3 2 1))

=> ((12) (34) (6567 (89 (10))

;; Used with a list of subgroup lengths whose sum is less than the length of the
;5 original list

(split-into-sub-groups (1 2 3456 7 89 10) (2 1))

=> ((1 2) (3))

;; Used with a list of subgroup lengths whose sum is greater than the length of
;; the original list

(split-into-sub-groups (1 2 3456 7 8 9 10) ’(2 3 17))

=> ((12) (8345) (6789 10)

SYNOPSIS:

(defun split-into-sub-groups (list groups)

12.57 utilities/split-into-sub-groups2

[utilities | [Functions |
ARGUMENTS:

- A flat list.
- An integer that is the length of each of the sublists to be created.

RETURN VALUE:

A list of lists.

12 SC/UTILITIES

EXAMPLE:

;; The second argument fits evenly into the length of the original list.
(split-into-sub-groups2 (1 23456 7 89 10 11 12) 3)

=> ((123) (456) (789 (10 11 12))

;; The second argument does not fit evenly into the length of the original
;3 list.

(split-into-sub-groups2 (1 23456 7 8 9 10 11 12) 5)
=> ((12345) (6789 10) (11 12))

SYNOPSIS:

(defun split-into-sub-groups2 (list length)

12.58 utilities/split-into-sub-groups3

[utilities | [Functions |
ARGUMENTS:

- A flat list.
- An integer that is the length of the new sublists.

RETURN VALUE:

A list of lists.

EXAMPLE:

(split-into-sub-groups3 (1 23456 7 8 9 10 11 12) 3)
=> ((123) (456) (789 (10 11 12))
(split-into-sub-groups3 ’(1 23456 7 8 9 10 11 12) 5)
=> ((12345) (678910 11 12))

SYNOPSIS:

(defun split-into-sub-groups3 (list length)

148

12 SC/UTILITIES 149

12.59 utilities/srt

[utilities | [Functions |
ARGUMENTS:

- A number that is a sample-rate conversion factor.
OPTIONAL ARGUMENTS:

- A number that is the factor required for transposing one octave.
- A number that is the number of scale degrees in an octave.

RETURN VALUE:
A number.

EXAMPLE:

;35 Using the defaults
(srt 1.73)

=> 9.4893

;;; Using a sample-rate conversion factor of 4.0 for the octave and specifying
;33 13 divisions of the octave
(srt 1.73 4.0 13)

=> 5.14
SYNOPSIS:

(let ((last8vesize 0)
(log8ve 0.0)) ;; so we don’t have to recalculate each time
(defun srt (srt &optional (octave-size 2.0) (divisions-per-octave 12)
;; MDE Tue Feb 7 16:59:45 2012 -- round so we don’t get tiny
;3 fractions of semitones due to float inaccuracies?
(round-to 0.0001))

12.60 utilities/string-replace

[utilities | [Functions |
ARGUMENTS:

12 SC/UTILITIES 150

- A string that is the string segment to be replaced.

- A string that is the string with which the specified string segment is to
be replaced.

- The string in which the specified segment is to be sought and replaced.

RETURN VALUE:

A string.

EXAMPLE:

(string-replace "flat" "\\flat" "bflat clarinet")

=> "b\\flat clarinet"

SYNOPSIS:

(defun string-replace (what with string)

12.61 utilities/swap-elements

[utilities | [Functions |
ARGUMENTS:

- A list.

RETURN VALUE:

A list.

EXAMPLE:

(swap-elements (1 23 4567 89 10))
=> (21436587 10 9)
(swap-elements (1 23 4567 8 9))
=>(2143658709)

SYNOPSIS:

(defun swap-elements (list)

13 CLM/CLM-LOOPS 151

12.62 utilities/wavelab-to-audacity-marker-file

[utilities | [Functions |

ARGUMENTS: OPTIONAL ARGUMENTS: RETURN VALUE: EXAMPLE: SYN-
OPSIS:

(defun wavelab-to-audacity-marker-file (file &optional (sampling-rate 44100))

12.63 utilities/wrap-list

[utilities | [Functions |
ARGUMENTS:

: inlizzéger which is the O-based position in the original list where the
new list is to begin.

RETURN VALUE:

A list.

EXAMPLE:

(wrap-list ’(1 23 4567 89) 4)

=> (667891234

SYNOPSIS:

(defun wrap-list (list start)

13 clm/clm-loops

[Functions |

ARGUMENTS:

- The name of a sound file, including path and extension.

- A list of numbers that are time in seconds. These serve as the
"entry-points", i.e. loop markers within the file, and delineate the
beginning and end of segments that will be shuffled and played back at
random in the resulting file.

13

CLM/CLM-LOOPS 152

OPTIONAL ARGUMENTS:

keyword arguments.

:max-perms. A number that is the maximum number of permutations generated
for the transitions. Default = 1000.

:fibonacci-transitions. A list of numbers that serve as the number of
steps in each transition from one segment to the next. These numbers will
be used as the first argument to the call to fibonacci-transition.
Default = ’(34 21 13 8)

:max-start-time. A number that is the maximum time in second at which a
segment can start in the resulting sound file. Default = 60.0.
routput-dir. The directory path for the output file. Default = "/tmp/".
:srate. The sampling rate. If specified by the user, this will generally
be a number. By default it takes the CLM global sample-rate, i.e.

clm: :*clm-srate*

:data-format. The data format of the resulting file. This must be
preceded by the clm package qualifier. See clm.html for types of data
formats, such as mus-bshort, mus-124float etc.

Default is the whatever the CLM global clm::*clm-data-format* is set to.
:header-type. The header type of the resulting file. This must be
preceded by the clm package qualifier. See clm.html for possible header
types, such as mus-riff, mus-aifc etc. By default it takes the CLM global
clm: :*clm-header-typex*.

:sndfile-extension. A string or NIL. If a string, this will be appended
to the resulting sound file as a file extension. If NIL, the sound file
extension will automatically be selected based on the header type. NB:
This argument does not affect the header type! Default = NIL.

:channels. An integer that is the number of channels in the resulting
output. If greater than one, the segments will be automatically panned
amongst the channels. Default = 1.

:transpositions. A list of number that are transpositions in

semitones. These will be shuffled and applied randomly to each
consecutive segment in the output. Default = ’(0).

:num-shuffles. An integer that will indicate how many times the lists
passed to fibonacci-transitions and entry-points will be shuffled before
generating output. Default = - 1.

:suffix. A string that will be automatically appended to the end of the
file name. Default = "".

:src-width. A number that represents the accuracy of the sample-rate
conversions undertaken for transposition. The higher this number is, the
more accurate the transposition will be, but the longer it will take to
process the file. Default = 5.

RETURN VALUE:

Returns the name of the file generated.

14 CLM/CLM-LOOPS-ALL 153

EXAMPLE:

;55 A straightforward example with a number of the variables.
(clm-loops "/path/to/sndfile-3.aiff"

?(0.180 2.164 4.371 7.575 9.4 10.864)

:fibonacci-transitions (1 2 3 4 5)

:max-perms 7

routput-dir "/tmp/"

:channels 1

:transpositions ’(1 12 -12)

:num-shuffles 3

:src-width 20)

=> "/tmp/sndfile-3-loops-from-00m00.180-.wav"
SYNOPSIS:

#+clm

(defun clm-loops (sndfile entry-points &key
(max-perms 1000)
(fibonacci-transitions (34 21 13 8))
(max-start-time 60.0)
(output-dir "/tmp/")
(srate clm::*clm-sratex)
(data-format clm::*clm-data-formatx*)
;; MDE Fri May 11 15:33:45 2012
(header-type clm::*clm-header-typex*)
;; MDE Fri May 11 15:34:17 2012 --
(sndfile-extension nil)
(channels 1)
;; semitones
(transpositions ’(0))
;; added 31/7/05 to vary the order of
;; entry points, transpositions and
;; fibonacci-transitions (could be 0!)
(num-shuffles 1)
(suffix "")
(src-width 5))

14 clm/clm-loops-all

[Functions |

ARGUMENTS:

14

CLM/CLM-LOOPS-ALL

A string that is the name of the source sound file including directory
path and extension.

A list of lists of numbers that are entry points (loop markers) in the
specified source sound file.

OPTIONAL ARGUMENTS:

keyword arguments:

:max-perms. A number that is the maximum number of permutations generated
for the transitions. Default = 1000.

:fibonacci-transitions. A list of numbers that serve as the number of
steps in each transition from one segment to the next. These numbers will
be used as the first argument to the call to fibonacci-transition.
Default = ’(34 21 13 8).

:max-start-time. A number that is the maximum time in seconds at which a
segment can start in the resulting sound file. Default = 60.0.
routput-dir. The directory path for the output file. Default = "/tmp/".
:srate. The sampling rate. If specified by the user, this will generally
be a number. By default it takes the CLM global sample-rate, i.e.

clm: :*clm-sratex*

:data-format. The data format of the resulting file. This must be
preceded by the clm package qualifier. See clm.html for types of data
formats, such as mus-bshort, mus-124float etc.

Default is the whatever the CLM global clm::*clm-data-format* is set to.
:header-type. The header type of the resulting file. This must be
preceded by the clm package qualifier. See clm.html for possible header
types, such as mus-riff, mus-aifc etc. By default it takes the CLM global
clm: :*clm-header-typex*.

:sndfile-extension. A string or NIL. If a string, this will be appended
to the resulting sound file as a file extension. If NIL, the sound file
extension will automatically be selected based on the header type. NB:
This argument does not affect the header type! Default = NIL.

:channels. An integer that is the number of channels in the resulting
output. If greater than one, the segments will be automatically panned
amongst the channels. Default = 1.

:do-shuffles. T or NIL to indicate whether to shuffle the lists passed to
fibonacci-transitions and entry-points before generating output.

T = do shuffles. Default = T.

:start-after. A number. All loops will be excluded that start before this
number of seconds. Default = -1.0.

:stop-after. A number. All loops will be excluded that start after this
number of seconds. Default = 99999999.0.

:suffix. A string that will be automatically appended to the end of the
file name. Default = "".

:transpositions. A list of number that are transpositions in

semitones. These will be shuffled and applied randomly to each

154

14 CLM/CLM-LOOPS-ALL 155

consecutive segment in the output. Default = ’(0).

- :transposition-offset. A number that is an additional number of semitones
to be added to each transposition value before performing the
transposition. Default = 0.0.

- :src-width. A number that represents the accuracy of the sample-rate
conversions undertaken for transposition. The higher this number is, the
more accurate the transposition will be, but the longer it will take to
process the file. Default = 5.

RETURN VALUE:
Returns NIL.

EXAMPLE:

(clm-loops-all
(concatenate ’string
cl-user: :+slippery-chicken-home-dir+
"test-suite/test-sndfiles-dir-1/test-sndfile-3.aiff")
>((0.794 0.961 1.061 1.161 1.318 1.436 1.536)
(0.787 0.887 0.987 1.153 1.310 1.510)
(0.749 0.889 1.056 1.213 1.413)
(0.311 0.411 0.611 0.729)
(0.744 0.884 1.002))
:max-perms 6
:fibonacci-transitions ’(31 8 21 13)
routput-dir "/tmp/"
:channels 1
:transpositions ’(1 12 -12)
:src-width 20)

SYNOPSIS:

#+clm

(defun clm-loops-all (sndfile entry-points-list
&key
(max-perms 1000)
(fibonacci-transitions ’(34 21 13 8))
(max-start-time 60.0)
(output-dir "/tmp/")
(srate clm::*clm-sratex)
(data-format clm::*clm-data-format*)
;; MDE Fri May 11 15:33:45 2012
(header-type clm::*clm-header-type*)
;; MDE Fri May 11 15:34:17 2012 --

15 CLM/RANDOM-LOOP-POINTS

(sndfile-extension nil)

(channels 1)

(do-shuffles t) ;; see clm-loops

;3 exclude all those loops who start before this

;; number of seconds.

(start-after -1.0)

(stop-after 99999999.0)

(suffix "")

;; semitones

;3 6/10/06: using just one list of transpositions passed
;; onto clm-loops created the same tone structure for

;; every file generated (boring). This list will now be
;3 shuffled and 10 versions collected which will then be
;3 passed (circularly) one after the other to clm-loops.
(transpositions ’(0))

(transposition-offset 0.0)

(src-width 5))

15 clm/random-loop-points

[Functions |

ARGUMENTS:

- A string that is the file name, including directory path and extension,
of the output file to produce.

- A string that is the sound file for which to generate random entry
points.

OPTIONAL ARGUMENTS:

keyword arguments:

- :min-points. An integer that is the least number of entry points to
generate for each list. Default = 5.

- :max-points. An integer that is the greatest number of entry points to
generate for each list. Default = 13.

- :min-dur. A number that is the shortest duration between two entry
points. Default = 0.05.

- :num-loop-sets. An integer that is the number of lists of entry points to
generate. Default = 20.

- :scalers. A list of fractions that are durations relative to the min-dur,
such that, for example, a min-dur of 0.05 with a scaler of 13/8 would
result in a scaled duration of 0.08125. The fractions in this list will
be chosen at random when calculating the duration of the next loop
segment. Default = ’(1/1 2/1 3/2 5/3 8/5 13/8).

156

15 CLM/RANDOM-LOOP-POINTS 157

RETURN VALUE: EXAMPLE:

(random-loop-points

"/tmp/outfile"
"/path/to/test-sndfile-3.aiff"

:min-points 3

:max-points 7

:min-dur 0.1

:num-loop-sets 5

:scalers ’(1/1 2/1 3/2 5/3 7/5 11/7 13/11))

=> ((0.789 0.929 1.079) (0.028 0.228 0.368 0.487 0.687) (0.014 0.164 0.321)
(0.256 0.406 0.524 0.681) (0.069 0.235 0.353 0.472 0.572 0.69))

SYNOPSIS:

#+clm

(defun random-loop-points (outfile sndfile
&key
;3 MDE Thu May 17 17:02:15 2012 -- could also be
;; terror or anything else that with-open-file
;5 accepts
(if-outfile-exists :overwrite)
;; the minimum number of time points for an output
;3 loop——number of looped sound segments is 1- this
(min-points 5)
;3 max number of time points--the actual number of
;3 points will be randomly chosen between these two
;3 numbers.
(max-points 13)
;; minimum duration of a loop segment--this number
;3 will actually be used and scaled by scalers
(min-dur 0.05)
;; how many sets of loops should be generated
(num-loop-sets 20)
;; scalers for the min-dur: these are all
;3 proportions relative to min-dur so if we have
;; 13/8 in this list and min-dur of 0.05 then the
;; duration for such a segment would be 0.08125.
;; these will be chosen at random when calculating
;; the next loop segment duration
(scalers ’(1/1 2/1 3/2 5/3 8/5 13/8)))

16 SC/NAMED-OBJECT 158

16 sc/named-object

[Classes |
NAME:

named-object
File: named-object.lsp

Class Hierarchy: None: base class of all slippery-chicken classes.

Version: 1.0.0-beta2
Project: slippery chicken (algorithmic composition)
Purpose: Implementation of the named-object class which is the

base class for all of the slippery-chicken classes.

The data slot of the named-object class and its
subclasses generally holds the original data passed when
creating the object. In anything but the simplest of
classes this may quickly become out-of-date as the object
is manipulated, but is nevertheless retained so that a)
the user can see what data was used to create an object,
and b) the user can derive new objects from an object’s
original data. Data relevant to a specific subclass is
often stored in slots other than :data, e.g. bars,
rhythms, etc. so the user should not be alarmed if the
data slot itself does not seem to reflect changes made to
an object.

Author: Michael Edwards: m@michael-edwards.org
Creation date: 4th December 2000
$$ Last modified: 12:17:00 Sat Apr 28 2012 BST

SVN ID: $Id: named-object.lsp 1982 2012-05-24 15:35:54Z medward2 $

16.1 named-object/activity-levels

[named-object | [Classes]
NAME:

16 SC/NAMED-OBJECT

activity-levels
File:

Class Hierarchy:
Version:
Project:

Purpose:

Author:

Creation date:

$$ Last modified:

SVN ID: $Id: activity-levels.lsp 1982 2012-05-24 15:35:54Z medward2 $

16.2 named-object/linked-named-object

activity-levels.lsp

named-object -> activity-levels

1.0.0-beta2

slippery chicken (algorithmic composition)

class used in rthm-chain.
No public interface envisaged (so no robodoc entries).

Michael Edwards: m@michael-edwards.org

4th February 2010

12:24:01 Thu May 17 2012 BST

[named-object | [Classes |

NAME:

linked-named-object

File:

Class Hierarchy:
Version:
Project:

Purpose:

Author:

Creation date:

$$ Last modified:

linked-named-object.lsp

named-object -> linked-named-object

1.0.0-beta2

slippery chicken (algorithmic composition)

Extension of named-object class to provide slots for the
previous and next objects in a recursive-assoc-list.

Michael Edwards: m@michael-edwards.org

March 10th 2002

09:18:07 Wed May 16 2012 BST

159

16 SC/NAMED-OBJECT 160

SVN ID: $Id: linked-named-object.lsp 1982 2012-05-24 15:35:54Z medward2 $

16.2.1 linked-named-object/bar-holder

[linked-named-object | [Classes]
NAME:

bar-holder
File: bar-holder.1lsp

Class Hierarchy: named-object -> linked-named-object -> bar-holder

Version: 1.0.0-beta2
Project: slippery chicken (algorithmic composition)
Purpose: This class is meant to be subclassed by piece, section

and sequence, all of which hold each other or, ultimately
a list of bars with relevant rhythms, timings, pitches

etc.
Author: Michael Edwards: m@michael-edwards.org
Creation date: 16th February 2002

$$ Last modified: 14:35:05 Fri Apr 20 2012 BST

SVN ID: $Id: bar-holder.lsp 1982 2012-05-24 15:35:54Z medward2 $

16.2.2 bar-holder/change-pitches

[bar-holder | [Methods |
ARGUMENTS:

the bar-holder object (e.g. piece)

the sc player (symbol)

- which bar to start at (integer)

a list of notes in bars (see above)

- (optional default t): whether the last note’s octave will

be used if any notes are specificed without an octave (doesn’t work with
chords) .

16 SC/NAMED-OBJECT 161

RETURN VALUE:

always t

EXAMPLE:

;33 (change-pitches bh ’vla 5 ’((g3 gs4) nil (nil nil aqf5)))
SYNOPSIS:

(defmethod change-pitches ((bh bar-holder) player start-bar new-pitches
&optional (use-last-octave t) ignore)

16.2.3 bar-holder/delete-all-marks

[bar-holder | [Methods |
ARGUMENTS: RETURN VALUE: EXAMPLE: DATE: SYNOPSIS:

(defmethod delete-all-marks ((bh bar-holder) start-bar num-bars player)

16.2.4 bar-holder/get-note

[bar-holder | [Methods |
ARGUMENTS:

the bar-holder object (e.g. piece)

- the bar number (starting from 1)

- the note number (starting from 1) (see above).
the player (symbol)

OPTIONAL ARGUMENTS:

- (optional default nil) whether, when accessing a pitch in a chord,
whether to return the written or sounding pitch.

RETURN VALUE:
An event object, or pitch if accessing a chord.
SYNOPSIS:

(defmethod get-note ((bh bar-holder) bar-num note-num player &optional written)

16 SC/NAMED-OBJECT 162

16.2.5 bar-holder/piece

[bar-holder | [Classes]

NAME:

piece

File: piece.lsp

Class Hierarchy: mnamed-object -> linked-named-object -> sclist ->
circular-sclist -> assoc-list -> recursive-assoc-list ->
piece

AND

named-object -> linked-named-object -> bar-holder ->

piece
Version: 1.0.0-beta2
Project: slippery chicken (algorithmic composition)
Purpose: Implementation of the piece class which holds all the

note information for a whole piece in the form of
sections (possibly subsections), which then contain
player-sections, sequenzes and rthm-seq-bars.
Author: Michael Edwards: m@michael-edwards.org
Creation date: 16th February 2002

$$ Last modified: 21:42:56 Mon May 7 2012 BST

SVN ID: $Id: piece.lsp 1982 2012-05-24 15:35:54Z medward2 $

16.2.6 piece/copy-bars

[piece | [Methods]

ARGUMENTS: OPTIONAL ARGUMENTS: RETURN VALUE: EXAMPLE: SYN-
OPSIS:

(defmethod copy-bars ((p piece) from-start-bar to-start-bar
from-player to-player num-bars
&optional (print-bar-nums nil))

16 SC/NAMED-OBJECT 163

16.2.7 piece/delete-sequenzes

[piece | [Methods |

ARGUMENTS: OPTIONAL ARGUMENTS: RETURN VALUE: EXAMPLE: SYN-
OPSIS:

(defmethod delete-sequenzes ((p piece) bar-num player &optional (how-many 1))

16.2.8 piece/get-nth-sequenz

[piece | [Methods |
ARGUMENTS:

- A piece object.

- The ID of the section in from which the sequenz object is to be
returned.

- The ID of the player from whose part the sequenz object is to be
returned.

- An integer that is the index (position) of the desired sequenz object
within the given section. This number is O-based.

OPTIONAL ARGUMENTS:

- T or NIL to indicate whether to convert sequenz objects that are NIL (the
specified player has no events in the specified sequenz) to sequenz
objects consisting of full-bar rests. T = create rest sequences.

Default = T.

RETURN VALUE:
Returns a sequenz object.
EXAMPLE:

;55 Returns a sequenz object
(let ((mini
(make-slippery-chicken
’+mini+
:ensemble ’ (((hn (french-horn :midi-channel 1))
(vc (cello :midi-channel 2))))
:set-palette ’((1 ((£3 g3 a3 b3 c4 d4 e4 f4 g4 a4 b4 cb))))
:set-map *((1 (1111 1))
(2 (11111))

16 SC/NAMED-OBJECT 164

(3 (11111))
:rthm-seq-palette *((1 ((((4 4) h qe s s))
:pitch-seq-palette ((1 2 3 4 5)))))
:rthm-seq-map ’((1 ((hn (1 1 1 1 1))
(ve 1 111 1))))
(2 ((hn (nil nil nil nil nil))
(ve (1111 1))))
3 ((hn (1111 1))
(ve (1 111.1)O)NN
(get-nth-sequenz (piece mini) 3 ’hn 2))

SEQUENZ: pitch-curve: (1 2 3 4 5)
RTHM-SEQ: num-bars: 1
num-rhythms: 5
num-notes: 5
num-score-notes: 5
num-rests: O
duration: 4.0
psp-inversions: NIL
marks: NIL
time-sigs-tag: NIL
handled-first-note-tie: NIL
(for brevity’s sake, slots pitch-seq-palette and bars are not printed)
SCLIST: sclist-length: 3, bounds-alert: T, copy: T
LINKED-NAMED-OBJECT: previous: NIL, this: (1), next: NIL
BAR-HOLDER:
start-bar: 13
end-bar: 13
num-bars: 1
start-time: 48.0
end-time: 52.0
start-time-qtrs: 48.0
end-time-qtrs: 52.0
num-notes (attacked notes, not tied): 5
num-score-notes (tied notes counted separately): 5
num-rests: 0
duration-qtrs: 4.0
duration: 4.0 (4.000)

SYNOPSIS:

(defmethod get-nth-sequenz ((p piece) section player seq-num ; O-based
&optional (create-rest-seq t))

16 SC/NAMED-OBJECT

16.2.9 piece/get-sequenz-from-bar-num

[piece | [Methods |
ARGUMENTS:

- A piece object.

- An integer that is the number of the bar from which to return the sequenz

object.

- The ID of the player from whose part the sequenz object is to be

returned.

RETURN VALUE:

A sequenz object.

EXAMPLE:

(let ((mini
(make-slippery-chicken

)

:ensemble ’(((hn (french-horn :midi-channel 1))
(vc (cello :midi-channel 2))))
:set-palette > ((1 ((£f3 g3 a3 b3 c4 d4 e4 f4 g4 a4 b4 c5))))

+mini+

:set-map ((1 (1111 1))

:rthm-seq-palette > ((1 ((((4 4) h g e s 8))
:pitch-seq-palette ((1 2 3 4 5)))))

2 @@11111)
B @111

:rthm-seq-map ’((1 ((hn (1

(ve (1
(2 ((hn (1
(ve (1
(3 ((hn (1
(ve (1

(get-sequenz-from-bar-num (piece

=>
SEQUENZ:
RTHM-SEQ:

pitch-curve: (1 2 3 4 5)
num-bars: 1
num-rhythms: 5
num-notes: 5
num-score-notes: 5
num-rests: O
duration: 4.0
psp—inversions: NIL

1

N e

mini

1

R e

1

1

N S S S Y

1))

1))

1))

1))

1))
NN
7 ’vc))

165

16 SC/NAMED-OBJECT 166

marks: NIL
time-sigs-tag: NIL
handled-first-note-tie: NIL
(for brevity’s sake, slots pitch-seq-palette and bars are not printed)
SCLIST: sclist-length: 3, bounds-alert: T, copy: T
LINKED-NAMED-OBJECT: previous: NIL, this: (1), next: NIL
BAR-HOLDER:
start-bar: 7
end-bar: 7
num-bars: 1
start-time: 24.0
end-time: 28.0
start-time-qtrs: 24.0
end-time-qtrs: 28.0
num-notes (attacked notes, not tied): 5
num-score-notes (tied notes counted separately): 5
num-rests: O
duration-qtrs: 4.0
duration: 4.0 (4.000)

SYNOPSIS:

(defmethod get-sequenz-from-bar-num ((p piece) bar-num player)

16.2.10 piece/insert-bar

[piece | [Methods]
ARGUMENTS:

<bar-num> is the bar-number within the rsb BEFORE which the new bar is to
be inserted.

OPTIONAL ARGUMENTS: RETURN VALUE: EXAMPLE: SYNOPSIS:

(defmethod insert-bar ((p piece) (rsb rthm-seq-bar) bar-num
;; these aren’t actually optional but we don’t
;; need them in the rthm-seq method
&optional section player seq-num ; seq-num is l-based!
;; this really is optional
pitch-seq)

16.2.11 piece/rebar

[piece | [Methods |

16 SC/NAMED-OBJECT 167

DATE:

29-Jan-2010

DESCRIPTION

Go through the sequences and rebar according to the first one that has the
least number of bars (but following the player hierarchy).

ARGUMENTS:

- A piece object (usually provided by calling from the slippery-chicken
class)

OPTIONAL ARGUMENTS:

- A list of player IDs from the given piece object, ordered in terms of
importance i.e. which instrument’s bar structure should take precedence.

NB: The optional arguments are actually required in this class (not in
slippery-chicken) but the rebar-fun is not yet used.

RETURN VALUE:
Always T.
SYNOPSIS:

(defmethod rebar ((p piece) &optional instruments-hierarchy rebar-fun)

16.2.12 bar-holder/player-section

[bar-holder | [Classes]
NAME:

player-section
File: player-section.lsp

Class Hierarchy: mnamed-object -> linked-named-object -> bar-holder
-> player-section
AND
named-object -> linked-named-object -> sclist
-> player-section

16 SC/NAMED-OBJECT 168

Version: 1.0.0-beta2
Project: slippery chicken (algorithmic composition)
Purpose: Implementation of player-section class which is simply a

bar holder that contains a list of sequenzes for a
particular player.

Author: Michael Edwards: m@michael-edwards.org
Creation date: 18th March 2002
$$ Last modified: 11:28:21 Thu Feb 9 2012 GMT

SVN ID: $Id: player-section.lsp 1982 2012-05-24 15:35:54Z medward2 $

16.2.13 bar-holder/section

[bar-holder | [Classes]
NAME:

section
File: section.lsp

Class Hierarchy: mnamed-object -> linked-named-object -> bar-holder

-> section
Version: 1.0.0-beta2
Project: slippery chicken (algorithmic composition)
Purpose: Implementation of section class which is simply a bar

holder and recursive-assoc-list that contains (possibly
subsections which contain) player-sections.

Author: Michael Edwards: m@michael-edwards.org
Creation date: 23rd March 2002
$$ Last modified: 21:47:20 Sun May 6 2012 BST

SVN ID: $Id: section.lsp 1982 2012-05-24 15:35:54Z medward2 $

16 SC/NAMED-OBJECT

16.2.14 section/get-all-players

[section | [Methods |
ARGUMENTS:

- A section object.

RETURN VALUE:

- A list of player IDs (symbols).

EXAMPLE:

(let ((mini
(make-slippery-chicken
’+mini+

:ensemble ’(((cl (b-flat-clarinet :midi-channel 1))
(hn (french-horn :midi-channel 2))
(ve (cello :midi-channel 3))))
:set-palette ’((1 ((£3 g3 a3 b3 c4 d4 e4 f4 g4 a4 b4 cb))))

:set-map *((1 (1111 1))
(2 (1 1111)

311111
:rthm-seq-palette >((1 ((((4 4) h qe s s))
:pitch-seq-palette ((1 2 3 4 5)))))

:rthm-seq-map ’ ((1 ((cl
(hn

(vc

(2 ((c1

(vc

(3 ((hn

(vc

(print (get-all-players (get-section
(print (get-all-players (get-section
(print (get-all-players (get-section

=>
(CL HN VC)
(CL HN VC)
(CL HN VC)

SYNOPSIS:

¢
1
(1
(1
(1
1
1

1

=R e e

1

1

e

1 1))

1))

MM

1))

MM

1))
SODDDIDD))
mini 1)))
mini 2)))
mini 3))))

1
1
1
1
1
1

(defmethod get-all-players ((s section))

169

16 SC/NAMED-OBJECT 170

16.2.15 section/get-bar

[section | [Methods |

ARGUMENTS: OPTIONAL ARGUMENTS: RETURN VALUE: EXAMPLE: SYN-
OPSIS:

(defmethod get-bar ((s section) bar-num &optional player)

16.2.16 section/get-sequenz

[section | [Methods |
ARGUMENTS:

- A section object.

- The ID of the player from whose part the sequenz object is to be
returned.

- An integer that is the number of the sequence object to be returned from
within the given section object. This number is 1-based.

RETURN VALUE:
A sequenz object.
EXAMPLE:

(let ((mini
(make-slippery-chicken
’+mini+
:ensemble ’(((cl (b-flat-clarinet :midi-channel 1))
(vc (cello :midi-channel 2))))
:set-palette > ((1 ((£3 g3 a3 b3 c4))))
:set-map ((1 (1111 1))
(2 (11111)
(3 (11111)))
:rthm-seq-palette ’((1 ((((4 4) h g e s 8))
:pitch-seq-palette ((1 2 3 4 5))))
(2 ((((4 4) ge s s h))
:pitch-seq-palette ((1 2 3 4 5))))
(3 ((((4 4) e sshq)
:pitch-seq-palette ((1 2 3 4 5)))))
:rthm-seq-map ’((1 ((c1l (1 111 1))
(ve (1111 1))
(2 ((cl (2 2222))
(ve (2222 2))))

16 SC/NAMED-OBJECT 171

(3 ((c1l (3333 3))
(ve (33333

(get-sequenz (get-section mini 2) ’vc 2))

=>
SEQUENZ: pitch-curve: (1 2 3 4 5)
RTHM-SEQR: num-bars: 1
num-rhythms: 5
num-notes: 5
num-score-notes: 5
num-rests: 0
duration: 4.0
psp-inversions: NIL
marks: NIL
time-sigs-tag: NIL
handled-first-note-tie: NIL
(for brevity’s sake, slots pitch-seq-palette and bars are not printed)
SCLIST: sclist-length: 3, bounds-alert: T, copy: T
LINKED-NAMED-OBJECT: previous: (1), this: (2), next: (3)
BAR-HOLDER:
start-bar: 7
end-bar: 7
num-bars: 1
start-time: 24.0
end-time: 28.0
start-time-qtrs: 24.0
end-time-qtrs: 28.0
num-notes (attacked notes, not tied): 5
num-score-notes (tied notes counted separately): 5
num-rests: O
duration-qtrs: 4.0
duration: 4.0 (4.000)

SYNOPSIS:

(defmethod get-sequenz ((s section) player seq-num) ; l-based

16.2.17 section/has-subsections

[section | [Methods |

ARGUMENTS: OPTIONAL ARGUMENTS: RETURN VALUE: EXAMPLE: SYN-
OPSIS:

(defmethod has-subsections ((s section))

16 SC/NAMED-OBJECT 172

16.2.18 section/num-sequenzes

[section | [Methods |
ARGUMENTS:

- A section object.
RETURN VALUE:

An integer that is the number of sequenz objects in the specified section
object.

EXAMPLE:

(let ((mini
(make-slippery-chicken
’+mini+
:ensemble ’(((vc (cello :midi-channel 1))))
:set-palette > ((1 ((£3 g3 a3 b3 c4))))
:set-map ((1 (1111 1))
(2 (1 1111)
(3 (11111))
:rthm-seq-palette > ((1 ((((4 4) h g e s 8))
:pitch-seq-palette ((1 2 3 4 5)))))
:rthm-seq-map ’((1 ((vc (1 111 1))))
(2 ((ve (1111 1))
B ((ve (11 111NN

(num-sequenzes (get-section mini 2)))

=> 5
SYNOPSIS:

(defmethod num-sequenzes ((s section))

16.2.19 section/re-bar

[section | [Methods |

ARGUMENTS: OPTIONAL ARGUMENTS: RETURN VALUE: EXAMPLE: SYN-
OPSIS:

(defmethod re-bar ((s section)
&key start-bar

16 SC/NAMED-OBJECT 173

end-bar

(min-time-sig ’(2 4))

verbose

;3 could also be a beat rhythmic unit
(auto-beam t))

16.2.20 bar-holder/sequenz

[bar-holder] [Classes]
NAME:

sequenz
File: sequenz.lsp

Class Hierarchy: mnamed-object -> linked-named-object -> sclist -> rthm-seq
-> sequenz

AND
named-object -> linked-named-object -> bar-holder
—-> sequenz
Version: 1.0.0-beta2
Project: slippery chicken (algorithmic composition)
Purpose: Implementation of the sequenz class which holds the

necessary data (pitch, rhythms etc.) for one sequenz for
one instrument.

Author: Michael Edwards: m@michael-edwards.org
Creation date: March 15th 2002
$$ Last modified: 18:49:39 Tue May 1 2012 BST

SVN ID: $Id: sequenz.lsp 1982 2012-05-24 15:35:54Z medward2 $

16.2.21 bar-holder/transpose-bars

[bar-holder | [Methods |
ARGUMENTS: RETURN VALUE: EXAMPLE: DATE: SYNOPSIS:

(defmethod transpose-bars ((bh bar-holder) semitones start-bar num-bars player

16 SC/NAMED-OBJECT 174

&key

(destructively nil)

(print-bar-nums nil)

;; the default functions are the class methods for
;3 pitch or chord.

(chord-function #’transpose)

(pitch-function #’transpose))

16.2.22 linked-named-object/instrument

[linked-named-object | [Classes]
NAME:

instrument
File: instrument.lsp

Class Hierarchy: mnamed-object -> linked-named-object -> instrument

Version: 1.0.0-beta2
Project: slippery chicken (algorithmic composition)
Purpose: Implementation of the instrument class which defines

musical instrument properties like range and
collects/stores information about what the instrument
plays: how many notes, in how many bars etc.

Author: Michael Edwards: m@michael-edwards.org

Creation date: 4th September 2001

$$ Last modified: 14:11:49 Thu Apr 19 2012 BST

SVN ID: $Id: instrument.lsp 1982 2012-05-24 15:35:54Z medward2 $

16.2.23 instrument/default-chord-function

[instrument | [Functions |

ARGUMENTS:

- The current number from the pitch-seq. Currently ignored by default.
- The index that the first argument was translated into by the offset and

16 SC/NAMED-OBJECT 175

scaler (based on trying to get a best fit for the instrument and set).
This can be assumed to be a legal reference into pitch-list as it was
calculated as fitting in pitch-seq::get-notes. (zero-based.)

- The pitch-list created from the set, taking into account the instrument’s
range and other notes already played by other instruments.

- The current pitch-seq object. Currently ignored by default.

- The current instrument object. Currently ignored by default.

- The current set object. Currently ignored by default.

RETURN VALUE:
A chord object.
SYNOPSIS:

(defun default-chord-function (curve-num index pitch-list pitch-seq instrument
set)

16.2.24 instrument/in-range

[instrument | [Methods]
ARGUMENTS:

- An instrument object.
- A pitch item (pitch object or note-naem symbol).

OPTIONAL ARGUMENTS:

- T or NIL to indicate whether the pitch specified ist to be compared with
the given pitch object’s sounding or written range. T = Sounding.
Default = NIL. If T, a secondary NIL is also returned to indicate that
the specified pitch is neither too high nor too low.

RETURN VALUE:

Returns T if the specified pitch falls between the
lowest-sounding/lowest-written and the highest-sounding/highest-written
pitches of the given pitch object.

If the specified pitch is outside of the range, an additional value of O or
1 is also returned to indicate whether the specified pithc is too high (1)

or too low (0).

EXAMPLE:

16 SC/NAMED-OBJECT 176

;; Determine if a pitch provided as a note-name symbol falls within the written

;; range of a non-transposing instrument

(let ((i1l (make-instrument ’instl :lowest-written ’bf3 :highest-written ’a6)))
(in-range il ’c4))

=> T, NIL

;5 Determine if a pitch provided as a note-name symbol falls within the
;; sounding range of a transposing instrument, using the optional argument T
(let ((i2 (make-instrument ’instl :lowest-written ’fs3 :highest-written ’c6
:transposition ’BF)))
(in-range i2 ’c6 T))

=> NIL, 1

;5 A pitch object can be used as the specified pitch
(let ((i2 (make-instrument ’instl :lowest-written ’fs3 :highest-written ’c6
:transposition ’BF)))
(in-range i2 (make-pitch ’d6)))

=> NIL, 1
SYNOPSIS:

(defmethod in-range ((ins instrument) pitch &optional sounding)

16.2.25 instrument/make-instrument

[instrument | [Functions |

ARGUMENTS:
- A symbol that is the instrument ID.
OPTIONAL ARGUMENTS:

&key arguments:

- :staff-name. String. This is the unabbreviated instrument name that will
be used for the first page of printed scores.

- :staff-short-name. String. This is the abbreviated instrument name that
will be used for subsequent pages of printed scores.

- :lowest-written. Note-name symbol. This is the lowest written pitch
available on the given instrument. Defaults to NIL. A user may only
define either the lowest-written value or the lowest-sounding value. If a
lowest-written value is given, the method automatically determines the

16

SC/NAMED-OBJECT

lowest-sounding value based on the lowest-written value and the
transposition value.

:highest-written. Note-name symbol. This is the highest written pitch
available on the given instrument. Defaults to NIL. A user may only
define either the highest-written value or the highest-sounding value. If
a highest-written value is given, the method automatically determines the
highest-sounding value based on the highest-written value and the
transposition value.

:lowest-sounding. Note-name symbol. This is the lowest sounding pitch
available on the given instrument. Defaults to NIL. A user may only
define either the lowest-sounding value or the lowest-written value. If a
lowest-sounding value is given, the method automatically determines the
lowest-written value based on the lowest-sounding value and the
transposition value.

:highest-sounding. Note-name symbol. This is the highest sounding pitch
available on the given instrument. Defaults to NIL. A user may only
define either the highest-sounding value or the highest-written value. If
a highest-sounding value is given, the method automatically determines
the highest-written value based on the highest-sounding value and the
transposition value.

:transposition. Note-name symbol. This is the key of the given instrument
(such as the "B-flat" of the "B-flat clarinet"), given as a note-name
symbol (such as ’BF for B-flat). If a value is only given for the
:transposition argument but not for the :transposition-semitones
argument, and there are multiple semitone transposition options for the
key specified, the method will choose the most common semitone
transposition for that given key. NB: When using keyword argument
:transposition rather than :transposition-semitones, sc will have a
warning printed by cm with indications as to which direction the
transposition has been undertaken.

:transposition-semitones. Integer (positive or negative). The number of
semitones lower that a given instrument sounds than written, e.g. -2 for
B-flat Clarinet. If a value is only given for the
:transposition-semitones argument but not for the :transposition
argument, the method will automatically determine the key for the
:transposition argument. The listener will drop into the debugger with an
error if a key is given for the :transposition argument and the number
specified for the :transposition-semitones does not correspond with that
key.

:starting-clef. Symbol. This value determines the first clef that a given
instrument is to use if that instrument can use different clefs. For a
list of available clefs see the :clefs argument below.

Default = ’treble.

:clefs. List of symbols. All clefs that a given instrument may use in the
course of a piece. Clefs available are treble, alto, tenor, bass,
percussion, double-treble, and double-bass. Clefs are to be given in

177

16 SC/NAMED-OBJECT 178

order of preference. Defaults automatically to the value given to
:starting-clef if no other clefs are specified. NB: If a separate list is
indeed given here, the method will automatically add the value for
:starting-clef as well, should it have been omitted. In this case, a
warning will also be printed.

- :clefs-in-c. List of symbols. Similar to :clefs, but designates which
clefs an instrument uses in a C-score; for example, bass clarinet may
notated in bass cleff for sounding pitches though it is standardly
notated in treble clef for written pitches. For a list of clefs available
see the :clefs argument above.

- :largest-fast-leap. Number. This value indicates the largest interval, in
semitones, that a player can feasibly perform at a fast tempo on the
given instrument. Default = 999. "Fast" here is determined for the whole
piece by the slippery-chicken class’s fast-leap-threshold slot.

- :score-write-in-c. T or NIL. Determines whether the musical material for
the given instrument should be printed in C. T = print in C.

Default = NIL.

- :score-write-bar-line. Integer. This argument is used for indicating
system—-grouping in the printed score. The given integer specifies how
many instruments above this one should be grouped together with an
unbroken bar-line. Default = 1.

- :midi-program. Integer. The number of the MIDI program to be used for
playing back this instrument. Default = 1.

- :chords. T or NIL. Indicates whether the given instrument is capable of
playing chords (starting with 2-note simultaneities, but not
multiphonics) .

- :subset-id. Symbol, string, number, or NIL. Indicates the ID of a
specific subset of the current set to which the instrument’s pitch
selection is limited. No error will occur if no subset with this ID
exists in a given set, i.e. some may include this subset, some may not
and everything will function correctly--if the specified subset is not
present in the current set the pitch selection routine will select from
the whole set. In every case however, the usual set limiting according
to instrument range etc. will also apply. Default = NIL.

- :microtones. T or NIL. Indicates whether the instrument can play
microtones. T = can play microtones. Default = NIL. NB: If this value is
set to T, a separate :microtones-midi-channel must be specified; this can
be done for the given instrument object in the :ensemble block of the
make-slippery-chicken function.

- :missing-notes. A list of note-name symbols. This is a list of any notes
which the given instrument can’t play, for example certain
quarter-tones. These are to be given by the user as written-pitch
note-name symbols, but are always stored by the method as sounding
pitches.

- :prefers-notes. Symbol. ’high, ’low or NIL. This value indicates whether
to give preference, when choosing notes for the given instrument, to

16 SC/NAMED-OBJECT 179

pitches from the upper or lower end of the instrument’s range. When NIL,
preference is given to notes from its middle register. Default = NIL.

- :chord-function. If the given instrument can play chords then it will
need a reference to a function that can select chords for it. NB This
should be a symbol not a function object; thus, ’my-fun not
#’my-fun. Default = NIL.

RETURN VALUE:
Returns an instrument object.
EXAMPLE:

;; Make-instrument for the flute:

(make-instrument ’flute :staff-name "Flute" :staff-short-name "F1."
:lowest-written ’c4 :highest-written ’d7
:starting-clef ’treble :midi-program 74 :chords nil
:microtones t :missing-notes ’(cqs4 dqf4))

=>

INSTRUMENT: lowest-written:

PITCH: frequency: 261.626, midi-note: 60, midi-channel: O

[...]

, highest-written:

PITCH: frequency: 2349.318, midi-note: 98, midi-channel: 0O

[...]

lowest-sounding:

PITCH: frequency: 261.626, midi-note: 60, midi-channel: O

[...]

, highest-sounding:

PITCH: frequency: 2349.318, midi-note: 98, midi-channel: O
starting-clef: TREBLE, clefs: (TREBLE), clefs-in-c: (TREBLE)
prefers-notes: NIL, midi-program: 74
transposition: C, transposition-semitones: 0
score-write-in-c: NIL, score-write-bar-line: 1
chords: NIL, chord-function: NIL,
total-bars: O total-notes: 0, total-duration: 0.0
total-degrees: O, microtones: T
missing-notes: (CQS4 DQF4), subset-id: NIL
staff-name: Flute, staff-short-name : F1.,
largest-fast-leap: 999

[...]

NAMED-OBJECT: id: FLUTE, tag: NIL,

data: NIL

;3 A make-instrument for the b-flat bass clarinet

16 SC/NAMED-OBJECT 180

(make-instrument ’bass-clarinet :staff-name "Bass Clarinet" :lowest-written ’c3
:highest-written ’g6 :staff-short-name "Bass Cl."
:chords nil :midi-program 72 :starting-clef ’treble
:microtones t :prefers-notes ’low
:missing-notes ’(aqs4 bqgf4 bgs4 cqsb dqfb gqf3 fqs3 fqf3 eqf3

dqs3 dqgf3 cqs3)

:clefs ’(treble) :clefs-in-c ’(treble bass)
:transposition-semitones -14)

=>
INSTRUMENT: lowest-written:
PITCH: frequency: 130.813, midi-note: 48, midi-channel: O
[...]
, highest-written:
PITCH: frequency: 1567.982, midi-note: 91, midi-channel: 0O
[...]
lowest-sounding:
PITCH: frequency: 58.270, midi-note: 34, midi-channel: 0
[...]
, highest-sounding:
PITCH: frequency: 698.456, midi-note: 77, midi-channel: O
[...]
NAMED-OBJECT: id: BASS-CLARINET, tag: NIL,
data: NIL

SYNOPSIS:

(defun make-instrument (id &key
staff-name
staff-short-name
lowest-written
highest-written
lowest-sounding
highest-sounding
transposition
transposition-semitones
(starting-clef ’treble)
clefs
(largest-fast-leap 999)
score-write-in-c
(score-write-bar-line 1)
(midi-program 1)
chords
clefs-in-c
subset-id
microtones

16 SC/NAMED-OBJECT 181

missing-notes
prefers-notes
chord-function)

16.2.26 instrument/prefers-high

[instrument | [Methods |
ARGUMENTS:

- An instrument object.
RETURN VALUE:

Returns T if the PREFERS-NOTES slot of the given instrument object is set
to HIGH, otherwise NIL.

EXAMPLE:

;; Returns T if the PREFERS-NOTES slot of the given instrument object is set to
;3 *HIGH
(let ((i1 (make-instrument ’inst :prefers-notes ’high)))

(prefers-high i1))

=> T

;35 Returns NIL if the PREFERS-NOTES slot of the given instrument object is not
;; set to ’HIGH
(let ((i1 (make-instrument ’instl))
(i2 (make-instrument ’inst2 :prefers-notes ’low)))
(print (prefers-high il))
(print (prefers-high i2)))

=>

NIL

NIL
SYNOPSIS:

(defmethod prefers-high ((ins instrument))

16.2.27 instrument/prefers-low

[instrument | [Methods]
ARGUMENTS:

16 SC/NAMED-OBJECT 182

- An instrument object.
RETURN VALUE:

Returns T if the PREFERS-NOTES slot of the given instrument object is set
to ’LOW, otherwise NIL.

EXAMPLE:

;3 Returns T if the PREFERS-NOTES slot of the given instrument object is set to
;3 LOW
(let ((il (make-instrument ’inst :prefers-notes ’low)))

(prefers-low il1))

=>T
;; Returns NIL if the PREFERS-NOTES slot of the given instrument object is not
;3 set to ’LOW
(let ((i1 (make-instrument ’instl))
(i2 (make-instrument ’inst2 :prefers-notes ’high)))

(print (prefers-low il))

(print (prefers-low i2)))
=>

NIL
NIL

SYNOPSIS:

(defmethod prefers-low ((ins instrument))

16.2.28 instrument/set-prefers-high

[instrument | [Methods]
DATE:

05 Feb 2011

DESCRIPTION
Sets the PREFERS-NOTES slot of the given instrument object to ’HIGH.

ARGUMENTS:

- An instrument object.

16 SC/NAMED-OBJECT 183

OPTIONAL ARGUMENTS:

(- optional ignore argument; for internal use only).
RETURN VALUE:

Returns symbol HIGH.
EXAMPLE:

;; Returns symbol HIGH by default
(let ((i1 (make-instrument ’inst)))
(set-prefers-high il))

=> HIGH

;; Create an instrument object with only an ID, print the PREFERS-NOTES slot to
;; see that it is NIL by default, apply the set-prefers-high, and print the
;; slot again to see the changes
(let ((i1 (make-instrument ’inst)))
(print (prefers-notes il))
(set-prefers-high i1)
(print (prefers-notes il1)))

=>
NIL
HIGH

;; Reset to HIGH from LOW

(let ((il (make-instrument ’inst :prefers-notes ’low)))
(print (prefers-notes il))
(set-prefers-high i1)
(print (prefers-notes il1)))

=>

LOwW

HIGH

SYNOPSIS:

(defmethod set-prefers-high ((ins instrument) &optional ignore)

16.2.29 instrument/set-prefers-low

[instrument | [Methods |

16 SC/NAMED-OBJECT 184

DATE:
05 Feb 2011

DESCRIPTION
Sets the PREFERS-NOTES slot of the given instrument object to ’LOW.

ARGUMENTS:

- An instrument object.
OPTIONAL ARGUMENTS:

(- optional ignore argument; for internal use only).
RETURN VALUE:

Returns symbol LOW.
EXAMPLE:

;5 Returns symbol LOW by default
(let ((i1 (make-instrument ’inst)))
(set-prefers-low il1))

=> LOW

;; Create an instrument object with only an ID, print the PREFERS-NOTES slot to
;; see that it is NIL by default, apply the set-prefers-low, and print the
;3 slot again to see the changes
(let ((i1 (make-instrument ’inst)))
(print (prefers-notes il))
(set-prefers-low il)
(print (prefers-notes i1)))

=>
NIL
LOW

;; Reset to LOW from HIGH

(let ((il (make-instrument ’inst :prefers-notes ’high)))
(print (prefers-notes il))
(set-prefers-low il)
(print (prefers-notes il)))

16 SC/NAMED-OBJECT 185

=>
HIGH
LOW

SYNOPSIS:

(defmethod set-prefers-low ((ins instrument) &optional ignore)

16.2.30 instrument/transposing-instrument-p

[instrument | [Methods |
ARGUMENTS:

- An instrument object.
OPTIONAL ARGUMENTS:

- ignore-octaves. T or NIL to indicate whether instruments that transpose
at the octave are to be considered transposing instruments.
T = instruments that transpose at the octave are not considered
transposing instruments. Default = T.

RETURN VALUE:

Returns T if the given instrument object defines a transposing instrument,
otherwise NIL.

EXAMPLE:

;; Returns NIL if the instrument is not a transposing instrument
(let ((i1 (make-instrument ’instrument-one)))
(transposing-instrument-p i1))

=> NIL

;; Returns T if the instrument object has been defined using a non-NIL value

;; for :transposition

(let ((i2 (make-instrument ’instrument-two :transposition ’bf)))
(transposing-instrument-p i2))

=> T

;; Returns T if the instrument object has been defined using a non-0 value for
;3 :transposition-semitones

16 SC/NAMED-OBJECT 186

(let ((i3 (make-instrument ’instrument-two :transposition-semitones -3)))
(transposing-instrument-p i3))

=> T

;; Setting the optional argument to NIL causes instruments that transpose at

;; the octave to return T.

(let ((i3 (make-instrument ’instrument-two :transposition-semitones -12)))
(transposing-instrument-p i3))

=> NIL

(let ((i3 (make-instrument ’instrument-two :transposition-semitones -12)))
(transposing-instrument-p i3 nil))

=> T
SYNOPSIS:

(defmethod transposing-instrument-p ((ins instrument)
&optional (ignore-octaves t))

16.2.31 linked-named-object/pitch

[linked-named-object | [Classes]
NAME:

pitch
File: pitch.1lsp

Class Hierarchy: named-object -> linked-named-object -> pitch

Version: 1.0.0-beta2
Project: slippery chicken (algorithmic composition)
Purpose: Implementation of the pitch class for holding pitch

information: sybmolic representation (eg c4), MIDI note
number, frequency, sampling-rate conversion etc.

Author: Michael Edwards: m@michael-edwards.org

Creation date: March 18th 2001

16 SC/NAMED-OBJECT 187

$$ Last modified: 20:42:24 Sat May 19 2012 BST

SVN ID: $Id: pitch.lsp 1982 2012-05-24 15:35:54Z medward2 $

16.2.32 pitch/add-mark

[pitch | [Methods |
ARGUMENTS:

- A pitch object.
- A symbol that is a mark.

RETURN VALUE:

A list. The method returns the entire contents of the given pitch object’s
MARKS slot as a list.

Prints a warning when the specified mark is already present in the given
pitch object’s MARKs slot.

EXAMPLE:

;5 By default the MARKS slot of a newly created pitch object is set to NIL
(let ((p (make-pitch ’c4)))
(marks p))

=> NIL

;35 Add two marks and print the contents of the given pitch object’s MARKS slot
;; to see the changes
(let ((p (make-pitch ’c4)))

(add-mark p ’pizz)

(add-mark p ’a)

(print (marks p)))

=>
(A PIZZ)

;; Prints a warning when the specified mark is already present in the MARKS
;; slot, though it adds it again anyway.
(let ((p (make-pitch ’c4)))

(add-mark p ’pizz)

(add-mark p ’pizz)

16 SC/NAMED-OBJECT 188

(marks p))
=> (PIZZ P1ZZ)

WARNING:
pitch::add-mark: mark PIZZ already present but adding again!

SYNOPSIS:

(defmethod add-mark ((p pitch) mark &optional warn-rest)

16.2.33 pitch/degree-

[pitch] [Methods |
ARGUMENTS:

- A first pitch object.
- A second pitch object.

RETURN VALUE:
Returns a number. The number may be positive or negative.

EXAMPLE:

;; Subtracting the lower pitch object from the higher returns a positive number
(let ((pl (make-pitch ’d4))
(p2 (make-pitch ’c4)))
(degree- pl p2))

=> 4
;; Reversing the order in which the pitch objects are entered may return a
;5 negative number
(let ((p1l (make-pitch ’d4))
(p2 (make-pitch ’c4)))

(degree- p2 pl))
=> -4
SYNOPSIS:

(defmethod degree- ((pl pitch) (p2 pitch))

16 SC/NAMED-OBJECT 189

16.2.34 pitch/delete-marks

[pitch] [Methods |
ARGUMENTS:

- A pitch object.
RETURN VALUE:
Always returns NIL
EXAMPLE:

;; Add two marks, then delete them. The method returns NIL
(let ((p (make-pitch ’c4)))

(add-mark p ’pizz)

(add-mark p ’a)

(delete-marks p))

=> NIL

;; Add two marks and print the MARKS slot to see the changes. Then apply the
;3 delete-marks method and print the MARKS slot to see the changes.
(let ((p (make-pitch ’c4)))

(add-mark p ’pizz)

(add-mark p ’a)

(print (marks p))

(delete-marks p)

(print (marks p)))

=>
(A PIZZ)
NIL
SYNOPSIS:

(defmethod delete-marks ((p pitch))

16.2.35 pitch/enharmonic

[pitch] [Methods |
ARGUMENTS:

- A pitch object.

16 SC/NAMED-OBJECT 190

OPTIONAL ARGUMENTS:

- T or NIL to print a warning when no enharmonic can be found. Default = T.
RETURN VALUE:

A pitch object.
EXAMPLE:

;5 A "black-key" enharmonic equivalent
(let ((p (make-pitch ’cs4)))
(data (enharmonic p)))
=> DF4
;; Two chromatically consecutive "white-keys" are enharmonically equivalent
(let ((p (make-pitch ’f4)))
(data (enharmonic p)))
=> ES4
;5 The function returns a pitch object with the same pitch value if there is no
;3 enharmonic equivalent
(let ((p (make-pitch ’g4)))
(data (enharmonic p)))
=> G4
SYNOPSIS:

(defmethod enharmonic ((p pitch) &key (warn t))

16.2.36 pitch/in-octave

[pitch | [Functions |
ARGUMENTS:

- A pitch item. This can be a pitch object, a numerical frequency value, or
a note-name symbol.
- A number that is the specified octave designator (e.g. the "4" in "C4").

RETURN VALUE:

16 SC/NAMED-OBJECT 191

T if the specified pitch item falls within the specified octave, otherwise
NIL.

EXAMPLE:

;5 The function returns NIL if the specified pitch item does not fall within
;3 the specified octave.
(let ((p (make-pitch ’c4)))
(in-octave p 3))
=> NIL
;; The function will accept pitch objects
(let ((p (make-pitch ’c4)))
(in-octave p 4))
=T

;3 The function will accept numerical frequency values
(let ((p 261.63))
(in-octave p 4))
=>T
;5 The function will accept note-name symbols
(let ((p ’c4))
(in-octave p 4))
=>T
SYNOPSIS:

(defun in-octave (pitch octave)

16.2.37 pitch/invert-pitch-list

[pitch | [Functions |
ARGUMENTS:

- A list of pitch items. This may consist of pitch objects, note-name
symbols, or frequency numbers.

OPTIONAL ARGUMENTS:

16 SC/NAMED-OBJECT 192

- T or NIL to indicate whether the result should be a list of pitch objects
or a list of note-name symbols. T = note-name symbols. Default = NIL.
- The package in which the process is to be performed. Default = :sc.

RETURN VALUE:

Returns list of pitch objects by default. If the first optional argument is
set to T, the function will return a list of note-name symbols instead.

EXAMPLE:

;; The function returns a list of pitch objects by default

(et ((p1))
(setf pl (loop for m in ’(E4 G4 A4 C4) collect (make-pitch m)))
(invert-pitch-list pl))

=>

(

PITCH: frequency: 261.626, midi-note: 60, midi-channel: 0O
[...]

data: C4

[...]

PITCH: frequency: 207.652, midi-note: 56, midi-channel: 0
[...]

data: AF3

[...]

PITCH: frequency: 174.614, midi-note: 53, midi-channel: O
[...]

data: F3

[...]

PITCH: frequency: 155.563, midi-note: 51, midi-channel: O
[...]

data: EF3

)

;; Setting the first optional argument to T will cause the function to return a
;; list of note-name symbols instead
(let ((p1))

(setf pl ’(329.63 392.00 440.00 261.63))

(invert-pitch-list pl t))

=> (C4 AF3 F3 EF3)
SYNOPSIS:

(defun invert-pitch-list (pitch-list &optional

16 SC/NAMED-OBJECT 193

(return-symbols nil)
(package :sc))

16.2.38 pitch/make-pitch

[pitch | [Functions |
ARGUMENTS:

- A note, either as a alphanumeric note name or a numeric hertz frequency.
OPTIONAL ARGUMENTS:

keyword arguments:

- :src-ref-pitch. A note-name symbol indicating the perceived fundamental
pitch of a given digital audio file, to allow for later transposition of
that audio file using note-names.

- :midi-channel. An integer indicating which MIDI channel is to be used for
playback of this pitch.

RETURN VALUE:
- A pitch object.
EXAMPLE:

;; Make a pitch object using a note-name symbol
(make-pitch ’c4)

=>
PITCH: frequency: 261.626, midi-note: 60, midi-channel: O
pitch-bend: 0.0
degree: 120, data-consistent: T, white-note: C4
nearest-chromatic: C4
src: 1.0, src-ref-pitch: C4, score-note: C4
qtr-sharp: NIL, qtr-flat: NIL, qtr-tome: NIL,
micro-tone: NIL,
sharp: NIL, flat: NIL, natural: T,
octave: 4, cbths: 0, no-8ve: C, no-8ve-no-acc: C
show-accidental: T, white-degree: 28,
accidental: N,
accidental-in-parentheses: NIL, marks: NIL
LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL
NAMED-OBJECT: id: C4, tag: NIL,
data: C4

16 SC/NAMED-OBJECT 194

;; Make a pitch object using a frequency in hertz and including a value for the
;3 keyword argument :midi-channel, then print the DATA and MIDI-NOTE slots to
;; see the method’s automatic conversion for those values.
(let ((p (make-pitch 261.63 :midi-channel 1)))

(print (data p))

(print (midi-note p)))

=>
Cc4
60
;; Make a pitch object for use with a digital audio file that includes a
;; note-name symbol for the sample-rate-conversion reference pitch; then print
;3 the SRC slot of the resulting pitch object
(let ((p (make-pitch ’c4 :src-ref-pitch ’a4)))
(src p))

=> 0.5946035487490308
SYNOPSIS:

(defun make-pitch (note &key (src-ref-pitch ’c4) (midi-channel 0))

16.2.39 pitch/midi-

[pitch | [Methods]
ARGUMENTS:

- A first pitch object.
- A second pitch object.

RETURN VALUE:
Returns a number. The number may be positive or negative.
EXAMPLE:

;; Subtracting the lower pitch object from the higher returns a positive number
(let ((pl (make-pitch ’d4))
(p2 (make-pitch ’c4)))
(midi- p1l p2))

=> 2

16 SC/NAMED-OBJECT 195

;5 Reversing the order in which the pitch objects are entered may return a
;; negative number
(let ((pl (make-pitch ’d4))
(p2 (make-pitch ’c4)))
(midi- p2 p1))
=> -2

SYNOPSIS:

(defmethod midi- ((pl pitch) (p2 pitch))

16.2.40 pitch/no-accidental

[pitch] [Methods |

ARGUMENTS: OPTIONAL ARGUMENTS: RETURN VALUE: EXAMPLE: SYN-
OPSIS:

(defmethod no-accidental ((p pitch))

16.2.41 pitch/note=

[pitch] [Methods |
ARGUMENTS:

- A first pitch object.
- A second pitch object.

RETURN VALUE:

T if the note-name symbols of the given pitch objects are equal, otherwise
NIL.

EXAMPLE:

;5 Two pitch objects with equal note-name symbols return T
(let ((pl (make-pitch ’c4))
(p2 (make-pitch ’c4)))
(note= pl p2))

=>T
;5 Two pitch objects with unequal note-name symbols return F

16 SC/NAMED-OBJECT

(let ((pl (make-pitch ’c4))
(p2 (make-pitch ’d4)))
(note= pl p2))

=> NIL
;; Pitch objects created using frequency numbers and those created using
;; note-name symbols can be effectively compared using this method
(let ((pl (make-pitch ’c4))
(p2 (make-pitch 261.63)))
(note= pl p2))
=> T

SYNOPSIS:

(defmethod note= ((pl pitch) (p2 pitch) &optional ignore)

16.2.42 pitch/pitch-

[pitch | [Methods]
ARGUMENTS:

- A first pitch object.
- A second pitch object.

RETURN VALUE: EXAMPLE:

;; Get the distance between two "white-keys"
(let ((p1l (make-pitch ’d4))

(p2 (make-pitch ’c4)))
(pitch- pl p2))

=> 2.0

;3 Get the distance in semitones between two frequencies (rounded to the
;; nearest degree, which by default is quarter-tones)
(let ((pl (make-pitch 293.66))
(p2 (make-pitch 261.63)))
(pitch- pl p2))

=> 2.0

196

;; Getting the distance in semitones between pitches with fractional values can

16 SC/NAMED-OBJECT

;35 return fractional results
(let ((p1l (make-pitch ’dqgs4))
(p2 (make-pitch ’c4)))
(pitch- pl p2))
=> 2.5
SYNOPSIS:

(defmethod pitch- ((pl pitch) (p2 pitch))

16.2.43 pitch/pitch-class-eq

[pitch] [Methods |
DATE:

14 Aug 2010
DESCRIPTION

Test whether the values of two pitch objects are of the same pitch class,
i.e. both Cs, or F#s,irrespective of octave.

ARGUMENTS:

- A first pitch object.
- A second pitch object.

OPTIONAL ARGUMENTS:

- T or NIL to indicate whether or not enharmonic pitches are considered
equal. T = enharmonic pitches are considered equal. Default = NIL.

RETURN VALUE:

T if the values of the two pitch objects are of the same pitch class,
otherwise NIL.

EXAMPLE:

;3 A comparison of two pitch objects with values of the same pitch class
;33 returns T
(let ((pl (make-pitch ’c4))

(p2 (make-pitch ’ch)))

197

16 SC/NAMED-OBJECT 198

(pitch-class-eq pl p2))
=> T

;5 A comparison of two pitch objects with values of differing pitch classes
;3 returns NIL
(let ((p1l (make-pitch ’c4))
(p2 (make-pitch ’csb)))
(pitch-class-eq pl p2))

=> NIL

;3 A comparison of two pitch objects with enharmonically equivalent pitch
;; classes returns NIL by default
(let ((pl (make-pitch ’c4))
(p2 (make-pitch ’bs4)))
(pitch-class-eq pl p2))

=> NIL

;; Setting the optional argument to T causes the method to consider
;5 enharmonically equivalent pitch classes equal
(let ((pl (make-pitch ’c4))
(p2 (make-pitch ’bs4)))
(pitch-class-eq pl p2 t))
=> T
SYNOPSIS:

(defmethod pitch-class-eq ((pl pitch) (p2 pitch)
&optional enharmonics-are-equal)

16.2.44 pitch/pitch-in-range

[pitch] [Methods |

ARGUMENTS:
- A first pitch object.
- A second pitch object, which must be lower than the third.
- A third pitch object, which must be higher than the second.

RETURN VALUE:

T if the frequency value of the first specified pitch object falls between

16 SC/NAMED-OBJECT 199

the second and third specified pitch objects, otherwise NIL.

EXAMPLE:

;5 The method returns T when the frequency value of the first pitch object
;; falls between that of the second and third pitch objects.
(let ((p (make-pitch ’c4))
(1 (make-pitch ’g3))
(h (make-pitch ’a7)))
(pitch-in-range p 1 h))

=> T

;3 The method returns NIL when the frequency value of the first pitch object is

;; below the range designated by the frequency values of the other two objects.
(let ((p (make-pitch ’g3))

(1 (make-pitch ’c4))
(h (make-pitch ’a7)))
(pitch-in-range p 1 h))

=> NIL

;; The method returns NIL when the frequency value of the first pitch object is

;; above the range designated by the frequency values of the other two objects.
(let ((p (make-pitch ’a7))

(1 (make-pitch ’g3))
(h (make-pitch ’c4)))
(pitch-in-range p 1 h))

=> NIL

;5 The method will also return NIL if the frequency value of the second pitch
;; object is higher than that of the third
(let ((p (make-pitch ’c4))
(1 (make-pitch ’a7))
(h (make-pitch ’g3)))
(pitch-in-range p 1 h))

=> NIL

SYNOPSIS:

(defmethod pitch-in-range ((p pitch) (lowest pitch) (highest pitch))

16 SC/NAMED-OBJECT

16.2.45 pitch/pitch-inc

[pitch] [Methods |
ARGUMENTS:

- A pitch object.
OPTIONAL ARGUMENTS:

- A number indicating the step (in degrees) by which the pitch value is to
be incremented. Defaults = 1.

RETURN VALUE:
Returns a pitch object.

EXAMPLE:

;3 The method by default returns a pitch object and increments by one
;3 quarter-tone
(let ((p (make-pitch ’c4)))

(pitch-inc p))

PITCH: frequency: 269.292, midi-note: 60, midi-channel: O
pitch-bend: 0.5
degree: 121, data-consistent: T, white-note: C4
nearest-chromatic: C4
src: 1.0293022394180298, src-ref-pitch: C4, score-note: CS4
qtr-sharp: 1, qtr-flat: NIL, qtr-tome: 1,
micro-tone: T,
sharp: NIL, flat: NIL, natural: NIL,
octave: 4, cbths: 0, no-8ve: CQS, no-8ve-no-acc: C
show-accidental: T, white-degree: 28,
accidental: QS,
accidental-in-parentheses: NIL, marks: NIL
LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL
NAMED-OBJECT: id: CQS4, tag: NIL,
data: CQS4

;; Using the optional argument, increment steps can be changed; for example,
;; here to one semitone (= 2 quarter-tones)
(let ((p (make-pitch ’c4)))

(data (pitch-inc p 2)))

200

16 SC/NAMED-OBJECT 201

=> (CS4
;; Here the method increments by 4 quarter-tones = 1 whole-tone
(let ((p (make-pitch ’c4)))
(data (pitch-inc p 4)))
=> D4
;; Incrementing by an additional number of quarter-tones at each pass
(let ((p (make-pitch ’c4)))
(loop for i from O to 4 collect (data (pitch-inc p i))))

=> (C4 CQS4 CS4 DQF4 D4)
SYNOPSIS:

(defmethod pitch-inc ((p pitch) &optional (degrees 1))

16.2.46 pitch/pitch-intersection

[pitch | [Functions]
ARGUMENTS:

- A first list of pitch objects.
- A second list of pitch objects.

RETURN VALUE:

Returns a list of pitch objects that are common to both original lists.
EXAMPLE:

;5 Returns a list of pitch objects

(let ((p1l ’(c4 d4 e4 £4))

(p2 (loop for nn in ’(d4 e4 f4 g4) collect (make-pitch nn))))
(pitch-intersection pl p2))

(

PITCH: frequency: 293.665, midi-note: 62, midi-channel: 0O
[...]

data: D4

[...]

PITCH: frequency: 329.628, midi-note: 64, midi-channel: 0
[...]

16 SC/NAMED-OBJECT 202

data: E4

[...]

PITCH: frequency: 349.228, midi-note: 65, midi-channel: 0O
[...]

data: F4

[...]

)

SYNOPSIS:

(defun pitch-intersection (pitch-listl pitch-1ist2)

16.2.47 pitch/pitch-list-to-symbols

[pitch | [Functions]
ARGUMENTS:

- A list of pitch objects.
OPTIONAL ARGUMENTS:
- The package in which to process the list of pitches. Default = :sc.
RETURN VALUE:
A list of note-name symbols
EXAMPLE:
;3 Create a list of pitch objects and apply the pitch-list-to-symbols method
(let ((p1))
(setf pl (loop for m from O to 127 by 13

collect (make-pitch (midi-to-note m))))
(pitch-list-to-symbols pl))

=> (C-1 CSO D1 EF2 E3 F4 FS5 G6 AF7 A8)

SYNOPSIS:

(defun pitch-list-to-symbols (pitch-list &optional (package :sc))

16 SC/NAMED-OBJECT 203

16.2.48 pitch/pitch-max

[pitch] [Methods |
ARGUMENTS:

- A first pitch object.
- A second ptich object.

RETURN VALUE:
A pitch object.
EXAMPLE:

;; Compare two pitch objects and return the one with the greater frequency
;53 value
(let ((pl (make-pitch ’c4))
(p2 (make-pitch ’d4)))
(pitch-max pl p2))

PITCH: frequency: 293.665, midi-note: 62, midi-channel: O
pitch-bend: 0.0
degree: 124, data-consistent: T, white-note: D4
nearest-chromatic: D4
src: 1.1224620342254639, src-ref-pitch: C4, score-note: D4
qtr-sharp: NIL, qtr-flat: NIL, qtr-tome: NIL,
micro-tone: NIL,
sharp: NIL, flat: NIL, natural: T,
octave: 4, cbths: 0, no-8ve: D, no-8ve-no-acc: D
show-accidental: T, white-degree: 29,
accidental: N,
accidental-in-parentheses: NIL, marks: NIL
LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL
NAMED-OBJECT: id: D4, tag: NIL,
data: D4

;; Comparing two pitch objects with equal frequency values returns a pitch
;; object equal to both
(let ((p1l (make-pitch ’c4))
(p2 (make-pitch ’c4)))
(data (pitch-max pl p2)))

=> C4

SYNOPSIS:

16 SC/NAMED-OBJECT 204

(defmethod pitch-max ((pl pitch) (p2 pitch))

16.2.49 pitch/pitch-member

[pitch | [Functions |
ARGUMENTS:

- A pitch item. This may be a pitch object, a note-name symbol or a
numerical frequency value.

- A list of pitch items. These items may be pitch objects, note-name
symbols, or numerical frequency values.

OPTIONAL ARGUMENTS:

- T or NIL to indicate whether or not the function should consider
enharmonically equivalent pitches to be equal. T = enharmonics are
considered equal. Default = T.

- The second optional argument allows the user to specify the test for
comparison, such as note=, pitch-class-eq, or the default pitch=. If the
user wants to specify his or her own, the test must take three arguments:
pl, p2 and <enharmonics-are-equivalent> (which may of course be ignored).

RETURN VALUE:

Similar to Lisp’s "member" function, this method returns the tail of the
tested list starting with the specified pitch if the pitch is indeed a
member of that list, otherwise returns NIL. NB: The list returned is a list
of pitch objects.

EXAMPLE:

;5 Returns NIL if the specified pitch item is not a member of the given list
(et ((pl ’(c4 d4 e4)))
(pitch-member ’f4 pl))

=> NIL
;; Returns the tail of the given list starting from the specified pitch if that
;5 pitch is indeed a member of the tested list
(let ((pl ’(c4 d4 e4)))
(pitch-list-to-symbols (pitch-member ’d4 pl)))

=> (D4 E4)

16 SC/NAMED-OBJECT

;5 Enharmonically equivalent pitches are considered equal by default
(let ((pl ’(c4 ds4 e4)))
(pitch-list-to-symbols (pitch-member ’ef4 pl)))
=> (DS4 E4)
;5 Enharmonic equivalence can be turned off by setting the first optional
;; argument to NIL
(let ((pl ’(c4 ds4 ed)))
(pitch-list-to-symbols (pitch-member ’ef4 pl nil)))
=> NIL
SYNOPSIS:

(defun pitch-member (pitch pitch-list
&optional (enharmonics-are-equal t)
(test #’pitch=))

16.2.50 pitch/pitch-min

[pitch | [Methods]
ARGUMENTS:

- A first pitch object.
- A second ptich object.

RETURN VALUE:
A pitch object.

EXAMPLE:

;; Compare two pitch objects and return the one with the lower frequency value

(let ((pl (make-pitch ’c4))
(p2 (make-pitch ’d4)))
(pitch-min pl p2))

=>

PITCH: frequency: 261.626, midi-note: 60, midi-channel: O
pitch-bend: 0.0
degree: 120, data-consistent: T, white-note: C4
nearest-chromatic: C4
src: 1.0, src-ref-pitch: C4, score-note: C4

205

16 SC/NAMED-OBJECT

qtr-sharp: NIL, qtr-flat: NIL, gtr-tome: NIL,

micro-tone: NIL,

sharp: NIL, flat: NIL, natural: T,

octave: 4, cb5ths: 0, no-8ve: C, no-8ve-no-acc: C

show-accidental: T, white-degree: 28,

accidental: N,

accidental-in-parentheses: NIL, marks: NIL
LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL
NAMED-OBJECT: id: C4, tag: NIL,
data: C4

;; Comparing two pitch objects with equal frequency values returns a pitch
;; object equal to both
(let ((pl (make-pitch ’c4))
(p2 (make-pitch ’c4)))
(data (pitch-min pl p2)))

=> C4
SYNOPSIS:

(defmethod pitch-min ((pl pitch) (p2 pitch))

16.2.51 pitch/pitch-round

[pitch | [Methods |
ARGUMENTS:

- A pitch object.
OPTIONAL ARGUMENTS:

keyword arguments:

- :as-symbol. T or NIL to indicate whether the method is to return an
entire pitch object or just a note-name symbol of the new pitch. NIL = a
new pitch object. Default = NIL.

- :package. Used to identify a separate Lisp package in which to itern
result. This is really only applicable is combination with :as-symbol set
to T. Default = :sc.

RETURN VALUE:

A pitch object by default.

206

16 SC/NAMED-OBJECT 207

If the :as-symbol argument is set to T, then a note-name symbol is returned
instead.

EXAMPLE:

;; Returns a pitch object by default; here an example rounding a quarter-tone
;33 note-name symbol to the nearest chromatic pitch
(let ((p (make-pitch ’CQS4)))

(pitch-round p))

=>

PITCH: frequency: 261.626, midi-note: 60, midi-channel: O
[...]

NAMED-OBJECT: id: C4, tag: NIL,

data: C4

;5 Also rounds frequencies to the nearest chromatic pitch. This example first
;; prints the original values automatically stored with frequency 269.0
;3 (rounded by default to the nearest quarter-tone), then the new value rounded
;; to the nearest chromatic semitone
(let ((p (make-pitch 269.0)))

(print (data p))

(print (pitch-round p :as-symbol t)))

=>

CQs4
Cc4

SYNOPSIS:

(defmethod pitch-round ((p pitch)
&key
(as-symbol nil)
(package :sc))

16.2.52 pitch/pitch<

[pitch] [Methods |
ARGUMENTS:

- A pitch object.
- A second pitch object.

RETURN VALUE:

16 SC/NAMED-OBJECT 208

Returns T if the frequency value of the first pitch object is less than
that of the second, otherwise NIL.

EXAMPLE:

;5 T is returned when the frequency of the first pitch is less than that of
;; the second
(let ((pl (make-pitch ’c4))
(p2 (make-pitch ’d4)))
(pitch< pl p2))

=> T

;5 NIL is returned when the frequency of the first pitch is not less than
;; that of the second
(let ((pl (make-pitch ’c4))
(p2 (make-pitch ’d4)))
(pitch< p2 pl))

=> NIL

;35 Equivalent pitches return NIL
(let ((pl (make-pitch ’c4))
(p2 (make-pitch ’c4)))
(pitch< p2 p1))

=> NIL

;; This method can be effectively used to compare the frequency values of two
;5 pitch objects that were both created using frequency numbers
(let ((p1l (make-pitch 261.63))
(p2 (make-pitch 293.66)))
(pitch< pl p2))

=>T

;; Due to sc’s numerical accuracy, this method is not suitable for comparing
;; pitch objects of which one was created using a note-name symbol and the
;; other was created using a numerical frequency value. Such comparisons may
;; return misleading results.
(let ((pl (make-pitch ’c4))
(p2 (make-pitch 261.63)))
(pitch< pl p2))

=>T

16 SC/NAMED-OBJECT 209

SYNOPSIS:

(defmethod pitch< ((pl pitch) (p2 pitch))

16.2.53 pitch/pitch<=

[pitch | [Methods]
ARGUMENTS:

- A pitch object.
- A second pitch object.

RETURN VALUE:

Returns T if the frequency value of the first pitch object is less than or
equal to that of the second, otherwise NIL.

EXAMPLE:

;; T is returned when the frequency of the first pitch is less than or equal to
;5 that of the second
(let ((p1l (make-pitch ’c4))
(p2 (make-pitch ’d4)))
(pitch<= p1l p2))

=> T

;3 NIL is returned when the frequency of the first pitch is not less than or
;3 equal to that of the second
(let ((pl (make-pitch ’c4))
(p2 (make-pitch ’d4)))
(pitch<= p2 p1))

=> NIL
;5 Equivalent pitches return T
(let ((p1l (make-pitch ’c4))
(p2 (make-pitch ’c4)))
(pitch<= p2 p1))
=> T

;; This method can be effectively used to compare the frequency values of two
;; pitch objects that were both created using frequency numbers

16 SC/NAMED-OBJECT

(let ((p1 (make-pitch 261.63))
(p2 (make-pitch 293.66)))
(pitch<= p1 p2))
=> T
;; Due to sc’s numerical accuracy, this method is not suitable for comparing
;5 pitch objects of which one was created using a note-name symbol and the
;; other was created using a numerical frequency value. Such comparisons may
;; return misleading results.
(let ((p1l (make-pitch 261.63))
(p2 (make-pitch ’c4)))
(pitch<= pl p2))
=> NIL
SYNOPSIS:

(defmethod pitch<= ((pl pitch) (p2 pitch))

16.2.54 pitch/pitch=

[pitch | [Methods |
ARGUMENTS:

- A first pitch object.
- A second pitch object.

OPTIONAL ARGUMENTS:

- T or NIL to indicate whether or not enharmonic pitches are considered
equal. T = enharmonic pitches are considered equal. Default = NIL.

RETURN VALUE:

T if the values of the two specified pitch objects are equal, otherwise
NIL.

EXAMPLE:

210

;; Comparison of equal pitch objects created using note-name symbols returns T

(let ((pl (make-pitch ’C4))
(p2 (make-pitch ’C4)))
(pitch= p1 p2))

16 SC/NAMED-OBJECT 211

=T

;; Comparison of unequal pitch objects created using note-name symbols returns
NIL
(let ((pl (make-pitch ’C4))
(p2 (make-pitch ’D4)))
(pitch= pl p2))

=> NIL

;; Comparison of enharmonically equivalent pitch objects returns NIL by default
;; Comparison of equal pitch objects created using note-name symbols returns T
(let ((p1 (make-pitch ’CS4))
(p2 (make-pitch ’DF4)))
(pitch= p1l p2))

=> NIL

;3 Comparison of enharmonically equivalent pitch objects return T when the
;; optional argument is set to T
;; Comparison of equal pitch objects created using note-name symbols returns T
(let ((p1l (make-pitch ’C4))
(p2 (make-pitch ’C4)))
(pitch= p1l p2 t))

=> T
;; Comparison of pitch objects created using frequencies with those created
;; using note-name symbols return NIL
(let ((pl (make-pitch ’C4))
(p2 (make-pitch 261.63)))

(pitch= pl p2))
=> NIL
SYNOPSIS:

(defmethod pitch= ((pl pitch) (p2 pitch) &optional enharmonics-are-equal
(frequency-tolerance 0.01) (src-tolerance 0.0001))

16.2.55 pitch/pitch>

[pitch] [Methods |
ARGUMENTS:

16 SC/NAMED-OBJECT 212

- A pitch object.
- A second pitch object.

RETURN VALUE:

Returns T if the frequency value of the first pitch object is greater than
that of the second, otherwise NIL.

EXAMPLE:

;; T is returned when the frequency of the first pitch is greater than that of
;; the second
(let ((p1l (make-pitch ’d4))
(p2 (make-pitch ’c4)))
(pitch> pl p2))

=> T

;3 NIL is returned when the frequency of the first pitch is not greater than
;; that of the second
(let ((pl (make-pitch ’d4))
(p2 (make-pitch ’c4)))
(pitch> p2 pl))

=> NIL

;5 Equivalent pitches return NIL
(let ((pl (make-pitch ’d4))
(p2 (make-pitch ’d4)))
(pitch> p2 p1))

=> NIL

;5 This method can be effectively used to compare the frequency values of two
;5 pitch objects that were both created using frequency numbers
(let ((pl (make-pitch 293.66))
(p2 (make-pitch 261.63)))
(pitch> p1l p2))

=> T

;3 Due to sc’s numerical accuracy, this method is not suitable for comparing

;; pitch objects of which one was created using a note-name symbol and the

;; other was created using a numerical frequency value. Such comparisons may
return misleading results.

(1et ((p1 (make-pitch 261.63))

16 SC/NAMED-OBJECT 213
(p2 (make-pitch ’c4)))
(pitch> pl p2))
=> T
SYNOPSIS:

(defmethod pitch> ((pl pitch) (p2 pitch))

16.2.56 pitch/pitch>=

[pitch | [Methods]
ARGUMENTS:

- A pitch object.
- A second pitch object.

RETURN VALUE:

Returns T if the frequency value of the first pitch object is greater than
or equal to that of the second, otherwise NIL.

EXAMPLE:

;5 T is returned when the frequency of the first pitch is greater than or equal
;33 to that of the second
(let ((p1l (make-pitch ’d4))
(p2 (make-pitch ’c4)))
(pitch>= pl p2))

=> T

;5 NIL is returned when the frequency of the first pitch is not greater than or
;5 equal to that of the second
(let ((pl (make-pitch ’d4))
(p2 (make-pitch ’c4)))
(pitch>= p2 p1))

=> NIL

;5 Equivalent pitches return T
(let ((pl (make-pitch ’c4))
(p2 (make-pitch ’c4)))
(pitch>= p2 p1))

16 SC/NAMED-OBJECT 214

=>T
;3 This method can be effectively used to compare the frequency values of two
;; pitch objects that were both created using frequency numbers
(let ((p1l (make-pitch 293.66))
(p2 (make-pitch 261.63)))
(pitch>= p1 p2))
=>T
;; Due to sc’s numerical accuracy, this method is not suitable for comparing
;; pitch objects of which one was created using a note-name symbol and the
;; other was created using a numerical frequency value. Such comparisons may
;3 return misleading results.
(let ((pl (make-pitch ’c4))
(p2 (make-pitch 261.63)))
(pitch>= pl p2))
=> NIL
SYNOPSIS:

(defmethod pitch>= ((pl pitch) (p2 pitch))

16.2.57 pitch/print-simple-pitch-list

[pitch | [Functions |
DATE:

April 10th 2012

ARGUMENTS:

- A simple list of pitch objects.
OPTIONAL ARGUMENTS:

- The stream to print to (e.g. an open file). Default: the Lisp Terminal
(REPL) .

RETURN VALUE:

The list of pitch data symbols.

16 SC/NAMED-OBJECT

EXAMPLE:

(print-simple-pitch-list (init-pitch-list ’(c4 d4 e4)))
=>

(C4 D4 E4)

(C4 D4 E4)

SYNOPSIS:

(defun print-simple-pitch-list (pitch-list &optional stream)

16.2.58 pitch/remove-octaves

[pitch | [Functions |
ARGUMENTS:

- A list of pitch items. These may be pitch objects or note-name symbols.
OPTIONAL ARGUMENTS:

keyword arguments

- :as-symbol. T or NIL indicating whether the object is to return a list of
pitch objects or a list of note-name symbols. T = return pitch
objects. Default = NIL.

- :package. Used to identify a separate Lisp package in which to itern
result. This is really only applicable is combination with :as-symbol set
to T. Default = :sc.

- :allow. T or NIL to indicate whether pitch objects of certain, specified
octave-doublings are to be kept even if they are not the lowest. This
argument takes the form of either a single number or a list of
numbers. NB: This number does not indicate the octave in which the pitch
object is found, but rather pitch objects that are the specified number
of octaves above the lowest instance of the pitch class. Thus, :allow 2
indicates keeping the lowest pitch plus any instances of the same pitch
class two octaves above that lowest pitch (i.e.,
double-octaves). However, it is important to note that the function first
removes any octave doublings that are not excepted by the :allow
argument, which may produce confusing results. Given a list of
consecutive octaves, such as >(C1 C2 C3 C4) and an :allow value of 2, the
function will first remove any equal pitch classes that are are not 2
octaves apart, resulting in C2, C3, and C4 being removed as they are one
octave distant from Cl, C2 and C3. The result of the function using these
values would therefore be ’(C1).

RETURN VALUE:

215

16 SC/NAMED-OBJECT 216

Returns a list of pitch objects by default. If the keyword argument
:as-symbol is set to T, the method returns a list of note-name symbols
instead.

If the first element of the pitch list is a number (i.e. a frequency), the
method returns a list of frequencies.

EXAMPLE:

;5 The method returns a list of pitch objects by default
(remove-octaves ’(cl c2 c3 g3))

= (

PITCH: frequency: 32.703, midi-note: 24, midi-channel: O
[...]

data: C1

[...]

PITCH: frequency: 195.998, midi-note: 55, midi-channel: 0O
[...]

data: G3

[...]

)

;5 If the first element of the pitch list is a frequency, the method returns a
;5 list of frequencies

(remove-octaves ’(261.63 523.26 1046.52 196.00))

=> (261.63 196.0)

;5 Setting keyword argument :as-symbol to T returns a list of note-name symbols
;; instead

(remove-octaves ’(261.63 523.26 1046.52 196.00) :as-symbol t)

=> (C4 G3)

SYNOPSIS:

(defun remove-octaves (pitch-list &key as-symbol allow (package :sc))

16.2.59 pitch/remove-pitches

[pitch | [Functions |
ARGUMENTS:

- A list of pitch items from which the specified list of pitches is to be

16 SC/NAMED-OBJECT 217

removed. These can take the form of pitch objects, note-name symbols or
numerical frequency values.

- A list of pitch items to remove from the given list. These can take the
form of pitch objects, note-name symbols or numerical frequency
values. Even if only one pitch is to be removed is must be stated as a
list.

OPTIONAL ARGUMENTS:

keyword arguments:

- :enharmonics-are-equal. Set to T or NIL to indicate whether or not
enharmonically equivalent pitches are to be considered the same pitch. T
= enharmonically equaivalent pitches are equal. Default = T.

- :return-symbols. Set to T or NIL to indicate whether the function is to
return a list of pitch objects or note-name symbols. T = note-name
symbols. Default = NIL.

RETURN VALUE:

Returns a list of pitch objects by default. When the keyword argument
:return-symbols is set to T, the function will return a list of note-names
instead.

If the specified list of pitches to be removed are not found in the given
list, the entire list is returned.

EXAMPLE:

;; By default the function returns a list of pitch objects
(let ((pl ’(c4 d4 e4)))
(remove-pitches pl ’(d4 e4)))

=> (

PITCH: frequency: 261.626, midi-note: 60, midi-channel: O
[...]

data: C4

[...]

)

;; Setting the keyword argument :return-symbols to T causes the function to
;; return a list of note-name symbols instead. Note in this example too that
;; even when only one pitch item is being removed, it must be stated as a list.
(let ((pl ’(261.62 293.66 329.62)))
(remove-pitches pl ’(293.66) :return-symbols t))

16 SC/NAMED-OBJECT 218

=> (C4 E4)

;; The function will also accept pitch objects
(let ((pl (loop for n in ’(c4 d4 e4) collect (make-pitch n))))
(remove-pitches pl ‘(, (make-pitch ’e4)) :return-symbols t))

=> (C4 D4)

;3 By default the function considers enharmonically equivalent pitches to be

;5 equal

(let ((pl (loop for n in ’(c4 ds4 ed) collect (make-pitch n))))
(remove-pitches pl ’(ef4) :return-symbols t))

=> (C4 E4)

;; This feature can be turned off by setting the :enharmonics-are-equal keyword
;; argument to NIL. In this case here, the specified pitch is therefore not
;; found in the given list and the entire original list is returned.
(let ((pl (loop for n in ’(c4 ds4 ed) collect (make-pitch n))))
(remove-pitches pl ’(ef4)
:return-symbols t
:enharmonics-are-equal nil))

=> (C4 DS4 E4)
SYNOPSIS:
(defun remove-pitches (pitch-list remove

&key (enharmonics-are-equal t)
(return-symbols nil))

16.2.60 pitch/set-midi-channel

[pitch | [Methods]

ARGUMENTS:

- A pitch object.

- A number indicating the MIDI channel which is to be used to play back
non-microtonal pitches.

- A number indicating the MIDI channel which is to be used to play back
microtonal pitches.

RETURN VALUE:

A number indicating which value has been set to the given pitch object’s

16 SC/NAMED-OBJECT 219

MIDI-CHANEL slot.
EXAMPLE:

;; When the pitch of the given pitch object is non-microtonal, the method sets
;; that pitch object’s MIDI-CHANNEL slot to the first value specified.
(let ((p (make-pitch ’c4)))
(set-midi-channel p 11 12)
(midi-channel p))
=> 11
;; When the pitch of the given pitch object is microtonal, the method sets
;3 that pitch object’s MIDI-CHANNEL slot to the second value specified.
(let ((p (make-pitch ’cqsé)))
(set-midi-channel p 11 12))

=> 12
SYNOPSIS:

(defmethod set-midi-channel ((p pitch) midi-channel microtones-midi-channel)

16.2.61 pitch/sort-pitch-list

[pitch | [Functions]
ARGUMENTS:

- A list of pitch objects.
OPTIONAL ARGUMENTS:

- T or NIL to indicate whether the method is to return a list of pitch
objects or a list of note-name symbols.
- The package in which the operation is to be performed. Default = :sc.

RETURN VALUE:

Returns a list of pitch objects by default. When the first optional
argument is set to T, the method returns a list of note-name symbols
instead.

EXAMPLE:

16 SC/NAMED-OBJECT 220

;; Create a list of pitch objects by passing downward through a series of MIDI
;; values and print the result. Then apply the sort-pitch-list method and print
;; the result of that to see the list now ordered from low to high.
(let ((p1))

(setf pl (loop for m from 64 downto 60

collect (make-pitch (midi-to-note m))))
(print (loop for p in pl collect (data p)))
(print (sort-pitch-list pl)))

=>

(E4 EF4 D4 CsS4 C4)

(

PITCH: frequency: 261.626, midi-note: 60, midi-channel: 0
[...]

data: C4

[...]

PITCH: frequency: 277.183, midi-note: 61, midi-channel: 0O
[...]

data: CS4

[...]

PITCH: frequency: 293.665, midi-note: 62, midi-channel: O
[...]

data: D4

[...]

PITCH: frequency: 311.127, midi-note: 63, midi-channel: 0O
[...]

data: EF4

[...]

PITCH: frequency: 329.628, midi-note: 64, midi-channel: 0
[...]

data: E4

)

;; Setting the first optional argument to T causes the method to return a list
;; of note—name symbols instead
(let ((p1))
(setf pl (loop for m from 64 downto 60
collect (make-pitch (midi-to-note m))))
(sort-pitch-list pl t))

=> (C4 CS4 D4 EF4 E4)
SYNOPSIS:

(defun sort-pitch-list (pitch-list &optional
(return-symbols nil)

16 SC/NAMED-OBJECT 221

(package :sc))

16.2.62 pitch/transpose

[pitch | [Methods]
ARGUMENTS:

- A pitch object.
- A number representing the number of semitones to be transposed, and which
can be fractional.

OPTIONAL ARGUMENTS:

keyword arguments:

- :as—symbol. T or NIL to indicate whether the method is to return an
entire pitch object or just a note-name symbol of the new pitch. NIL = a
new pitch object. Default = NIL.

- :package. Used to identify a separate Lisp package in which to itern
result. This is really only applicable is combination with :as-symbol set
to T. Default = :sc.

RETURN VALUE:

A pitch object by default.

If the :as-symbol argument is set to T, then a note-name symbol is returned
instead.

EXAMPLE:

;; By default the method returns a pitch object
(let ((p (make-pitch ’c4)))
(transpose p 2))

=>

PITCH: frequency: 293.665, midi-note: 62, midi-channel: O
pitch-bend: 0.0
degree: 124, data-consistent: T, white-note: D4
nearest—-chromatic: D4
src: 1.1224620342254639, src-ref-pitch: C4, score-note: D4
qtr-sharp: NIL, qtr-flat: NIL, qtr-tome: NIL,
micro-tone: NIL,
sharp: NIL, flat: NIL, natural: T,
octave: 4, cbths: 0, no-8ve: D, no-8ve-no-acc: D

16 SC/NAMED-OBJECT 222

show-accidental: T, white-degree: 29,

accidental: N,

accidental-in-parentheses: NIL, marks: NIL
LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL
NAMED-OBJECT: id: D4, tag: NIL,
data: D4

;; Setting the :as-symbol keyword argument to T returns just the note-name
;; symbol of the new pitch instead
(let ((p (make-pitch ’c4)))

(transpose p 2 :as-symbol t))

=> D4

;3 The semitones argument can be set to a decimal-point fraction, which may
;; result in quarter-tone pitch values being returned
(let ((p (make-pitch ’c4)))

(transpose p 2.5))

PITCH: frequency: 302.270, midi-note: 62, midi-channel: O
pitch-bend: 0.5
degree: 125, data-consistent: T, white-note: D4
nearest-chromatic: D4
src: 1.1553527116775513, src-ref-pitch: C4, score-note: DS4
qtr-sharp: 1, qtr-flat: NIL, qtr-tome: 1,
micro-tone: T,
sharp: NIL, flat: NIL, natural: NIL,
octave: 4, cbths: 0, no-8ve: DQS, no-8ve-no-acc: D
show-accidental: T, white-degree: 29,
accidental: QS,
accidental-in-parentheses: NIL, marks: NIL
LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL
NAMED-OBJECT: id: DQS4, tag: NIL,
data: DQS4

;; Fractional semitone arguments are automatically rounded to the nearest
;; quarter-tone, causing x.5 and x.7, for example, to return the same result,
;; while x.3 and x.1 will return the same value as the given integer
(let ((p (make-pitch ’c4)))
(print (transpose p 2 :as-symbol t))
(print (loop for s from O to 4
collect (transpose p (+ 2 (* s .1)) :as-symbol t)))
(print (loop for s from 5 to 9
collect (transpose p (+ 2 (x s .1)) :as-symbol t))))

16 SC/NAMED-OBJECT

=>

D4

(D4 D4 D4 D4 D4)

(DQS4 DQRS4 DQS4 DQS4 DQS4)

SYNOPSIS:

(defmethod transpose ((p pitch) semitones &key (as-symbol nil) (package :sc)
ignore)

16.2.63 pitch/transpose-pitch-list

[pitch | [Functions |
ARGUMENTS:

- A list of pitch objects.
- A number indicating the number of semitones by which the list is to be
transposed.

OPTIONAL ARGUMENTS:

- T or NIL indicating whether the method is to return a list of pitch
objects or a list of note-name symbols for those pitch objects. T =
note-name symbols. Default = NIL.

- The name of the package to perform the tranpositions. Default = :sc.

RETURN VALUE:

By default, the method returns a list of pitch objects. When the first
optional argument is set to T, a list of note-name symbols is returned
instead.

EXAMPLE:

;; Create a list of pitch objects and apply the transpose-pitch-list method
;; with the semitones argument set to 2
(let ((p1))
(setf pl (loop for m from 60 to 71 collect (make-pitch (midi-to-note m))))
(transpose-pitch-list pl 2))

=>

(

PITCH: frequency: 293.665, midi-note: 62, midi-channel: 0
[...]

223

16 SC/NAMED-OBJECT 224

PITCH: frequency: 311.127, midi-note: 63, midi-channel: 0
£iféi: frequency: 329.628, midi-note: 64, midi-channel: O
gif&i: frequency: 349.228, midi-note: 65, midi-channel: O
gi%éi: frequency: 369.994, midi-note: 66, midi-channel: 0
ﬁif&i: frequency: 391.995, midi-note: 67, midi-channel: O
giféi: frequency: 415.305, midi-note: 68, midi-channel: O
giféi: frequency: 440.000, midi-note: 69, midi-channel: 0
gif&%: frequency: 466.164, midi-note: 70, midi-channel: O
gif&i: frequency: 493.883, midi-note: 71, midi-channel: O
£iféi: frequency: 523.251, midi-note: 72, midi-channel: O
gif&%: frequency: 554.365, midi-note: 73, midi-channel: O
[...]

)

;; Perform the same action with the return-symbols optional argument set to T
(let ((p1))
(setf pl (loop for m from 60 to 71 collect (make-pitch (midi-to-note m))))
(print (transpose-pitch-list pl 2 t)))

=> (D4 EF4 E4 F4 FS4 G4 AF4 A4 BF4 B4 C5 CSb)

SYNOPSIS:

(defun transpose-pitch-list (pitch-list semitones &optional
(return-symbols nil)
(package :sc))

16.2.64 pitch/transpose-pitch-list-to-octave

[pitch | [Functions |
ARGUMENTS:

- A list of pitch objects.
- A number indicating the octave in which the resulting list should be.

16 SC/NAMED-OBJECT

OPTIONAL ARGUMENTS:

keyword arguments:

- :as-symbols. Set to T or NIL to indicate whether the method is to return
a list of pitch objects or a list of the note-name symbols from those
pitch objects.

- :package. Used to identify a separate Lisp package in which to itern
result. This is really only applicable is combination with :as-symbol set

to T. Default

- :remove-duplicates. Set to T or NIL to indicate whether any duplicate
pitch objects are to be removed from the resulting list.
duplicates. Default = T.

T = return as symbols. Default = NIL.

= !8cC.

RETURN VALUE:

Returns a list of pitch objects by default. When the keyword argument
:as-symbols is set to T, the method returns a list of note-name symbols

instead.

EXAMPLE:

;; Create a list of four pitch objects from random MIDI numbers and print it,

225

;; then apply transpose-pitch-list-to-octave, setting the octave argument to 4,

;5 and print the
(let ((p1))

(setf pl (loop repeat 4 collect (make-pitch (midi-to-note (random 128)))))

result

(print (loop for p in pl collect (data p)))
(print (transpose-pitch-list-to-octave pl 4)))

=>
(CS7 F7 BO D4)
(

PITCH: frequency:

[...]

data: B4

[...]

PITCH: frequency:
[...]

data: D4

[...]

PITCH: frequency:
[...]

data: CS4

[...]

PITCH: frequency:

493.883,

293.665,

277.183,

349.228,

midi-note:

midi-note:

midi-note:

midi-note:

71,

62,

61,

65,

midi-channel:

midi-channel:

midi-channel:

midi-channel:

16 SC/NAMED-OBJECT

data: F4

;; Setting the keyword argument :as-symbols to T return a list of note-names
;; instead
(let ((p1))
(setf pl (loop repeat 4 collect (make-pitch (midi-to-note (random 128)))))
(print (loop for p in pl collect (data p)))
(print (transpose-pitch-list-to-octave pl 4 :as-symbols t)))

=>
(D5 E1 C7 AF1)
(E4 AF4 D4 C4)

;5 The method removes duplicate pitch objects from the resulting list by

;3 default

(Let ((p1))
(setf pl (loop repeat 4 collect (make-pitch (midi-to-note (random 128)))))
(print (loop for p in pl collect (data p)))
(print (transpose-pitch-list-to-octave pl 4 :as-symbols t)))

=>

(B7 AF1 AF7 G1)
(G4 AF4 B4)

SYNOPSIS:

(defun transpose-pitch-list-to-octave (pitch-list octave
&key
as-symbols
(package :sc)
(remove-duplicates t))

16.2.65 pitch/transpose-to-octave

[pitch | [Methods]
ARGUMENTS:

- A pitch object.
- A number indicating the new octave.

OPTIONAL ARGUMENTS:

keyword arguments:

226

16 SC/NAMED-OBJECT

- :as-symbol. T or NIL to indicate whether the method is to return an
entire pitch object or just a note-name symbol of the new pitch. NIL = a

new pitch object. Default = NIL.

- :package. Used to identify a separate Lisp package in which to itern
result. This is really only applicable is combination with :as-symbol set

to T. Default = :sc.

RETURN VALUE:

A pitch object by default.

If the :as-symbol argument is set to T, then a note-name symbol is returned

instead.

EXAMPLE:

227

;3 Transpose the values of a pitch object containing middle-C (octave 4) to the

;33 C of the treble clef (octave 5)

(let ((p (make-pitch ’c4)))
(transpose-to-octave p 5))

PITCH:

frequency: 523.251, midi-note: 72, midi-channel: O
pitch-bend: 0.0

degree: 144, data-consistent: T, white-note: C5
nearest-chromatic: C5

src: 2.0, src-ref-pitch: C4, score-note: C5
qtr-sharp: NIL, qtr-flat: NIL, gtr-tome: NIL,
micro-tone: NIL,

sharp: NIL, flat: NIL, natural: T,

octave: 5, cbths: 0, no-8ve: C, no-8ve-no-acc: C
show-accidental: T, white-degree: 35,
accidental: N,

accidental-in-parentheses: NIL, marks: NIL

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL
NAMED-0BJECT: id: C5, tag: NIL,
data: C5

;; Setting the :as-symbol argument to T returns a note-name symbol instead of a

;5 pitch object

(let ((p (make-pitch ’c4)))
(transpose-to-octave p 5 :as-symbol t))

=> Cb

SYNOPSIS:

16 SC/NAMED-OBJECT 228

(defmethod transpose-to-octave ((p pitch) new-octave
&key
(as-symbol nil)
(package :sc))

16.2.66 linked-named-object/player

[linked-named-object | [Classes]
NAME:

player
File: player.lsp

Class Hierarchy: named-object -> linked-named-object -> player

Version: 1.0.0-beta2

Project: slippery chicken (algorithmic composition)

Purpose: Implementation of the player class which holds an
instrument or a assoc-list of instruments in it’s data
slot.

Author: Michael Edwards: m@michael-edwards.org

Creation date: 7th September 2001

$$ Last modified: 21:55:30 Tue May 8 2012 BST

SVN ID: $Id: player.lsp 1982 2012-05-24 15:35:54Z medward2 $

16.2.67 player/make-player

[player | [Functions |
ARGUMENTS:

- A symbol which will be the ID of the resulting player object.

- An instrument-palette object.

- A symbol or a list of symbols that are the the instruments from the
specified instrument-palette object that the given player will play, as
spelled and defined within the instrument-palette object. NB: If only one
instrument is to be assigned to the given player, it should be stated as
symbol rather than a list, to avoid errors in the DOUBLES slot.

16 SC/NAMED-OBJECT

OPTIONAL ARGUMENTS:

keyword arguments:

- :cmn-staff-args. A list of pairs that indicate any additional arguments
to the call to cmn::staff for this player, such as staff size, number of
lines etc. Instead of being real cmn function calls, as they would be in
normal cmn, this is a simple list of pairs; e.g. ’(staff-size .8
staff-lines 3). Defaults = NIL.

- :microtones-midi-channel. An integer that indicates the MIDI channel on
which any microtonal pitch material for this player is to be played
back. Default = -1.

- :midi-channel. An integer that indicates the MIDI channel on which any
non-microtonal pitch material for this player is to be played
back. Default = 1.

RETURN VALUE:
Returns a player object.
EXAMPLE:

;; Create a player object with just one instrument object
(let ((ip (make-instrument-palette
’inst-pal
>((picc (:transposition-semitones 12 :lowest-written d4
:highest-written c6))
(flute (:lowest-written c4 :highest-written d7))
(clar (:transposition-semitones -2 :lowest-written e3
thighest-written c6))
(horn (:transposition f :transposition-semitones -7
:lowest-written f2 :highest-written c5))
(vln (:lowest-written g3 :highest-written c7 :chords t))
(vla (:lowest-written c3 :highest-written f6 :chords t))))))
(make-player ’player-one ip ’flute))

=>

PLAYER: (id instrument-palette): INST-PAL

doubles: NIL, cmn-staff-args: NIL

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL
NAMED-OBJECT: id: PLAYER-ONE, tag: NIL,

data:

INSTRUMENT: lowest-written:

[...]

NAMED-OBJECT: id: FLUTE, tag: NIL,

data: NIL

229

16 SC/NAMED-OBJECT 230

;; Create a player object with two instruments, setting the midi channels using
;; the keyword arguments, then print the corresponding slots to see the changes
(let* ((ip (make-instrument-palette
’inst-pal
>((picc (:transposition-semitones 12 :lowest-written d4
thighest-written c6))
(flute (:lowest-written c4 :highest-written d7))
(clar (:transposition-semitones -2 :lowest-written e3
:highest-written c6))
(horn (:transposition f :transposition-semitones -7
:lowest-written f2 :highest-written c5))
(vln (:lowest-written g3 :highest-written c7 :chords t))
(vla (:lowest-written c3 :highest-written f6 :chords t)))))
(plr (make-player ’player-one ip ’(flute picc)
:midi-channel 1
:microtones-midi-channel 2)))
(print (loop for i in (data (data plr)) collect (id i)))
(print (midi-channel plr))
(print (microtones-midi-channel plr)))

=>
(FLUTE PICC)
1
2

;53 With specified cmn-staff-args
(let ((ip (make-instrument-palette
’inst-pal
>((picc (:transposition-semitones 12 :lowest-written d4
:highest-written c6))
(flute (:lowest-written c4 :highest-written d7))
(clar (:transposition-semitones -2 :lowest-written e3
thighest-written c6))
(horn (:transposition f :transposition-semitones -7
:lowest-written f2 :highest-written c5))
(vln (:lowest-written g3 :highest-written c7 :chords t))
(vla (:lowest-written c3 :highest-written f6 :chords t))))))
(make-player ’player-one ip ’(flute picc)
:midi-channel 1
:microtones-midi-channel 2
:cmn-staff-args ’ (staff-size .8 staff-lines 3)))

=>
PLAYER: (id instrument-palette): INST-PAL
doubles: T, cmn-staff-args: (#<SELF-ACTING {10097B6E73}>

16 SC/NAMED-OBJECT 231

#<SELF-ACTING {10097B6EE3}>), total-notes: 0, total-degrees: O,
total-duration: 0.000, total-bars: 0, tessitura: NIL
LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL
NAMED-OBJECT: id: PLAYER-ONE, tag: NIL,
data:
[...]

SYNOPSIS:

(defun make-player (id instrument-palette instruments
&key (cmn-staff-args nil)
(microtones-midi-channel -1) (midi-channel 1))

16.2.68 player/microtonal-chords-p

[player] [Methods |
ARGUMENTS:

- A player object.
RETURN VALUE:

Returns T if the value stored in the MICROTONES-MIDI-CHANNEL slot of the
given player object is greater than O, otherwise returns NIL.

EXAMPLE:

;; Returns T
(let* ((ip +slippery-chicken-standard-instrument-palette+)
(plr (make-player ’vln ip ’violin :microtones-midi-channel 2)))
(microtonal-chords-p plr))

=> T
;5 Returns NIL
(let* ((ip +slippery-chicken-standard-instrument-palette+)
(plr (make-player ’pno ip ’piano)))
(microtonal-chords-p plr))
=> NIL

SYNOPSIS:

(defmethod microtonal-chords-p ((p player))

16 SC/NAMED-OBJECT 232

(> (microtones-midi-channel p) 0))

2999939999939 393393393393 393 3333333333393 3393333333333333333333333I)

(defmethod score-write-bar-line ((p player))
(let* ((data (data p))
(ins (if (typep data ’assoc-list)
(first (data data))
data)))
(score-write-bar-line ins)))

16.2.69 player/player-get-instrument

[player | [Methods |
ARGUMENTS:

- A player object.
OPTIONAL ARGUMENTS:

- Actually a required object for multiple-instrument player objects: The
symbol that is the ID of the sought-after instrument object, as it
appears in the instrument-palette with which the player object which
made. If the given player object consists of only one instrument object,
this argument is disregarded and a warning is printed.

RETURN VALUE:
Returns an instrument object.
EXAMPLE:

;; Returns an instrument object. Needs no optional argument when applied to a
;5 player object that contains only one instrument object
(let* ((ip +slippery-chicken-standard-instrument-palette+)
(plr (make-player ’pno ip ’piano)))
(player-get-instrument plr))

=>

INSTRUMENT:

[...]

NAMED-OBJECT: id: PIANO, tag: NIL,
data: NIL

16 SC/NAMED-OBJECT 233

;; Returns the only existing instrument object and prints a warning if using
;; the optional argument when applying to a single-instrument player object
(let* ((ip +slippery-chicken-standard-instrument-palette+)
(plr (make-player ’pno ip ’piano)))
(id (player-get-instrument plr ’piano)))

=> PIANO
WARNING:

player::player-get-instrument: player PNO has only 1 instrument so optional
argument PIANO is being ignored

;; Asking for a non-existent instrument obect from a single-instrument player
;; object returns the only existing instrument object instead
(let* ((ip +slippery-chicken-standard-instrument-palette+)
(plr (make-player ’pno ip ’piano)))
(id (player-get-instrument plr ’marimba)))

=> PIANO
WARNING:

player::player-get-instrument: player PNO has only 1 instrument so optional
argument PIANO is being ignored

;; The ID desired instrument object must be specified when applying the method
;; to a mutliple-instrument player object
(let* ((ip +slippery-chicken-standard-instrument-palette+)
(plr (make-player ’percussion ip ’(marimba vibraphone))))
(id (player-get-instrument plr ’marimba)))

=> MARIMBA

;3 Interrupts and drops into the debugger when the optional argument is omitted
;; in applying the method to a multiple-instrument player object
(let* ((ip +slippery-chicken-standard-instrument-palette+)
(plr (make-player ’percussion ip ’(marimba vibraphone))))
(player-get-instrument plr))

=>
player::player-get-instrument: PERCUSSION doubles so you need to pass the ID of

the instrument you want.
[Condition of type SIMPLE-ERROR]

SYNOPSIS:

(defmethod player-get-instrument ((p player) &optional ins (warn t))

16 SC/NAMED-OBJECT 234

16.2.70 player/plays-transposing-instrument

[player | [Methods |
ARGUMENTS:

- A player object.
OPTIONAL ARGUMENTS:

- T or NIL to indicate whether instruments that transpose at the octave are
to be considered transposing instruments. T = instruments that transpose
at the octave are not considered transposing instruments. Default = T.

RETURN VALUE:

Returns T if one or more of the instrument objects assigned to the given
player object has a transposition value other than C or a
transposition-semitones value other than O.

EXAMPLE:

;; Create a player object using the ’b-flat-clarinet instrument object
;; definition from the default +slippery-chicken-standard-instrument-palette+,
;3 then apply the method.
(let* ((ip +slippery-chicken-standard-instrument-palette+)
(plr (make-player ’cl ip ’b-flat-clarinet)))
(plays-transposing-instrument plr))

=> T

;; Create a player object using the ’flute instrument object definition from
;; the default +slippery-chicken-standard-instrument-palette+, then apply the
;; method.
(let* ((ip +slippery-chicken-standard-instrument-palette+)
(plr (make-player ’fl ip ’flute)))
(plays-transposing-instrument plr))

=> NIL

;; Although the intended procedure is to list single instruments as once-off
;; symbols (as in the previous example), single instruments can also be added
;; as a one-item list
(let* ((ip +slippery-chicken-standard-instrument-palette+)
(plr (make-player ’fl ip ’(flute))))
(doubles plr))

16 SC/NAMED-OBJECT 235

=> NIL

;; Create a player object using a list that consists of the ’flute and
;; ’alto-sax instrument object definitions from the default
;; tslippery-chicken-standard-instrument-palette+, then apply the method to see
;; that it returns T even when only one of the instruments is transposing.
(let* ((ip +slippery-chicken-standard-instrument-palette+)
(plr (make-player ’fl ip ’(flute alto-sax))))
(plays-transposing-instrument plr))

=> T

;; Setting the optional argument to NIL causes instruments that transpose at
;; the octave to return T.
(let* ((ip +slippery-chicken-standard-instrument-palette+)
(plr (make-player ’db ip ’double-bass)))
(plays-transposing-instrument plr))

=> NIL
(let* ((ip +slippery-chicken-standard-instrument-palette+)
(plr (make-player ’db ip ’double-bass)))
(plays-transposing-instrument plr nil))
=> T

SYNOPSIS:

(defmethod plays-transposing-instrument ((p player)
&optional (ignore-octaves t))

16.2.71 player/tessitura-degree

[player] [Methods |
ARGUMENTS:

- A player object.
RETURN VALUE:

A number that is the tessitura-degree; i.e., average pitch of the given
isntrument for the entirety of the given musical data.

EXAMPLE:

16 SC/NAMED-OBJECT 236

(let ((mini
(make-slippery-chicken
’+mini+
:ensemble ’(((vn (violin :midi-channel 1))
(va (violin :midi-channel 2))
(vc (cello :midi-channel 3))))
:set-palette ’((1 ((gs3 as3 b3 cs4 ds4d e4 fs4 gs4 as4 b4 csb))))
tset-map *((1 (1111 1))
:rthm-seq-palette ’((1 ((((2 4) q (e) s (32) 32))
:pitch-seq-palette ((1 2 3)))))
:rthm-seq-map ’((1 ((vn (1 1 1 1 1))
(va (11 111))
(ve (1111 1))

(tessitura-degree (get-data ’vc (ensemble mini))))

=> 136
SYNOPSIS:

(defmethod tessitura-degree ((p player))

16.2.72 player/tessitura-note

[player | [Methods |

ARGUMENTS: OPTIONAL ARGUMENTS: RETURN VALUE: EXAMPLE: SYN-
OPSIS:

(defmethod tessitura-note ((p player))

16.2.73 player/total-bars

[player] [Methods |

ARGUMENTS: OPTIONAL ARGUMENTS: RETURN VALUE: EXAMPLE: SYN-
OPSIS:

(defmethod total-bars ((p player))

16.2.74 player/total-degrees

[player | [Methods]

ARGUMENTS: OPTIONAL ARGUMENTS: RETURN VALUE: EXAMPLE: SYN-
OPSIS:

16 SC/NAMED-OBJECT 237

(defmethod total-degrees ((p player))

16.2.75 player/total-duration

[player | [Methods |
ARGUMENTS:

- A player object.
RETURN VALUE:

A number that is the total duration in seconds of played notes.
EXAMPLE:

(let ((mini
(make-slippery-chicken
’+mini+
:ensemble ’(((vn (violin :midi-channel 1))
(va (violin :midi-channel 2))
(vc (cello :midi-channel 3))))
:set-palette ’((1 ((gs3 as3 b3 cs4 dsd ed fs4 gs4 asd b4 csb))))
:set-map *((1 (1 111 1)))
:rthm-seqg-palette ’((1 ((((2 4) q (e) s (32) 32))
:pitch-seq-palette ((1 2 3))))
(2 ((((2 4 (@ e (s) 32 32))
:pitch-seq-palette ((1 2 3)))))
:rthm-seq-map ’((1 ((vn (1 1 1 1 1))
(va (2222 2))
(ve (1212 1))
(print (total-duration (get-data ’vn (ensemble mini))))
(print (total-duration (get-data ’va (ensemble mini))))
(print (total-duration (get-data ’vc (ensemble mini)))))

g w o |

SYNOPSIS:

(defmethod total-duration ((p player))

16 SC/NAMED-OBJECT 238

16.2.76 player/total-notes

[player | [Methods |
ARGUMENTS:

- A player object.

RETURN VALUE:

- An integer that is the number of notes for that player.
EXAMPLE:

(let ((mini
(make-slippery-chicken
’+mini+
:ensemble ’(((vn (violin :midi-channel 1))
(va (violin :midi-channel 2))
(vc (cello :midi-channel 3))))
:set-palette ’((1 ((gs3 as3 b3 cs4 dsd ed fs4 gs4 asd b4 csb))))
:set-map *((1 (1111 1))
:rthm-seqg-palette ’((1 ((((2 4) q (e) s (32) 32))
:pitch-seq-palette ((1 2 3)))))
:rthm-seq-map ’((1 ((vn (1 1 1 1 1))
(va (1 1111))
(ve (11111
(print (total-notes (get-data ’vc (ensemble mini)))))

=> 15
SYNOPSIS:

(defmethod total-notes ((p player))

16.2.77 linked-named-object/rhythm

[linked-named-object | [Classes]
NAME:

rhythm

File: rhythm.1lsp

16 SC/NAMED-OBJECT

Class Hierarchy: named-object -> linked-named-object -> rhythm

Version: 1.0.0-beta2
Project: slippery chicken (algorithmic composition)
Purpose: Implementation of the rhythm class for parsing and

storing the properties of rhythms.
Author: Michael Edwards: m@michael-edwards.org
Creation date: 11th February 2001
$$ Last modified: 15:23:58 Mon May 14 2012 BST

SVN ID: $Id: rhythm.lsp 1982 2012-05-24 15:35:54Z medward2 $

16.2.78 rhythm/accented-p

[rhythm | [Methods |
DATE:

05 Apr 2011

DESCRIPTION

Check the MARKS slot of a given rhythm object to determine if it possesses
an accent mark. The rhythm object may also possess other marks as well.
ARGUMENTS:

- A rhythm object.

RETURN VALUE:

If the accent mark (’a) is indeed found in the MARKS slot of the given
rhythm object, the tail of the list of marks contained in that slot is
returned; otherwise NIL is returned.

EXAMPLE:

239

;; Make a rhythm object, add an accent, and test for the presence of the accent

(let ((r (make-rhythm ’q)))
(add-mark-once r ’a)
(accented-p r))

16 SC/NAMED-OBJECT 240

=> (A)
;; Check if an accent mark is among all marks in the MARKS slot
(let ((r (make-rhythm ’q)))

(add-mark-once r ’s)

(add-mark-once r ’a)

(accented-p r))
=> (A S)
;; Add an accent and staccato, then remove the accent and test for it
(let ((r (make-rhythm ’q)))

(add-mark-once r ’a)

(add-mark-once r ’s)

(rm-marks r ’a)

(accented-p r))

=> NIL
SYNOPSIS:

(defmethod accented-p ((r rhythm))

16.2.79 rhythm/add

[rhythm | [Methods |
ARGUMENTS:

- A first rhythm object.
- A second rhythm object.

OPTIONAL ARGUMENTS:

- T or NIL to indicate whether a warning is printed when a rhythm cannot be
made because the resulting value is O or a negative duration. Default =
NIL (no warning issued).

RETURN VALUE:
A rhythm object. Returns NIL when the object cannot be made.

EXAMPLE:

16 SC/NAMED-OBJECT 241

;5 A quarter plus an eighth makes a dotted quarter
(let ((r1 (make-rhythm ’q))
(r2 (make-rhythm ’e)))
(add r1 r2))

=>
RHYTHM: value: 2.6666666666666665, duration: 1.5, rq: 3/2, is-rest: NIL, score-rthm: 4.0f0.,
undotted-value: 4, num-flags: O, num-dots: 1, is-tied-to: NIL,
is-tied-from: NIL, compound-duration: 1.5, is-grace-note: NIL,
needs-new-note: T, beam: NIL, bracket: NIL, rqgq-note: NIL,
rqq-info: NIL, marks: NIL, marks-in-part: NIL, letter-value: 4,
tuplet-scaler: 1, grace-note-duration: 0.05
LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL
NAMED-OBJECT: id: Q., tag: NIL,
data: Q.

;5 A quarter plus a triplet-eighth is presented as a triplet-half
(let ((r1 (make-rhythm ’q))
(r2 (make-rhythm ’te)))
(data (add r1l r2)))

=> TH

;5 A quarter plus a septuplet-16th cannot be represented as a single, notatable
;; rhythm and therefore produces an object with a VALUE and DURATION but no
;; DATA
(let ((r1 (make-rhythm 4))
(r2 (make-rhythm 28)))

(print (value (add r1 r2)))

(print (duration (add ril r2)))

(print (data (add ri1 r2))))

=>
3.5
1.1428571428571428
NIL

SYNOPSIS:

(defmethod add ((rl rhythm) (r2 rhythm) &optional warn)

16.2.80 rhythm/add-mark

[rhythm] [Methods |
ARGUMENTS:

16 SC/NAMED-OBJECT 242

- A rhythm object.
- A mark.

OPTIONAL ARGUMENTS:

- T or NIL to indicated whether to issue a warning when trying to add marks
to a rest. Default = NIL.

RETURN VALUE:
Always T.
EXAMPLE:

(let ((r (make-rhythm ’q)))
(marks 1))

=> NIL

(let ((r (make-rhythm ’q)))
(add-mark r ’a))

=> T

(let ((r (make-rhythm ’q)))
(add-mark r ’s)
(marks r))

=> (8)

(let ((r (make-rhythm ’q)))
(add-mark r ’col-legno)
(add-mark r ’as)
(add-mark r ’x-head)
(marks r))

=> (X-HEAD AS COL-LEGNO)
(let ((r (make-rhythm ’q)))
(add-mark r ’s)

(add-mark r ’s))

=>T
WARNING: rhythm::add-mark: S already present but adding again!:

16 SC/NAMED-OBJECT 243

(let ((r (make-rhythm ’e :is-rest t)))
(add-mark r ’at)
(print (is-rest r))
(print (marks r)))

=>

T

(AT)

(let ((r (make-rhythm ’e :is-rest t)))
(add-mark r ’at t))

=T
WARNING:

[...]
rhythm: :add-mark: add AT to rest?

SYNOPSIS:

(defmethod add-mark ((r rhythm) mark &optional warn-rest)

16.2.81 rhythm/add-mark-once

[rhythm] [Methods |
DATE:

26 Jul 2011 (Pula)
DESCRIPTION

Apply the given mark to the given rhythm object, but do so only if the
given rhythm object does not yet have the mark.

ARGUMENTS:

- A rhythm object.
- A mark.

OPTIONAL ARGUMENTS:

- T or NIL to indicate whether or not to print a warning when attempting to
apply a mark to a rest.

RETURN VALUE:

16 SC/NAMED-OBJECT 244

Returns T if the mark is succssfully applied (if the rhythm object did not
already possess the mark), otherwise NIL if the mark was not applied
because the rhythm object already had it.

EXAMPLE:

(let ((r (make-rhythm ’q)))
(add-mark-once r ’a))

=> T

(let ((r (make-rhythm ’q)))
(add-mark-once r ’a)
(marks r))

=> (A)

(let ((r (make-rhythm ’q)))
(add-mark-once r ’a)
(add-mark-once r ’a))

=> NIL

(let ((r (make-rhythm ’q)))
(add-mark-once r ’a)
(add-mark-once r ’a)
(marks r))

=> (A)

SYNOPSIS:

(defmethod add-mark-once ((r rhythm) mark &optional warn-rest)

16.2.82 rhythm/begin-slur-p

[rhythm] [Methods |
ARGUMENTS:

- A rhythm object.
RETURN VALUE:

If the ’beg-sl mark is indeed found in the MARKS slot of the given rhythm

16 SC/NAMED-OBJECT

object, the tail of the list of marks contained in that slot is returned;
otherwise NIL is returned.

EXAMPLE:

;; Create a rhythm object, add a ’beg-sl mark and check for it
(let ((r (make-rhythm ’q)))
(add-mark-once r ’beg-sl)
(begin-slur-p r))
=> (BEG-SL)
;; Add several marks to a rhythm object and check for ’beg-sl
(let ((r (make-rhythm ’q)))
(loop for m in ’(a s beg-sl) do (add-mark-once r m))
(begin-slur-p r))
=> (BEG-SL S A)
;; Add a ’beg-sl mark to a rhythm object, then delete it and check for it
(let ((r (make-rhythm ’q)))
(add-mark-once r ’beg-sl)
(rm-marks r ’beg-sl)
(begin-slur-p 1))
=> NIL
SYNOPSIS:

(defmethod begin-slur-p ((r rhythm))

16.2.83 rhythm/delete-beam

[rhythm] [Methods |
ARGUMENTS:

- A rhythm object.
RETURN VALUE:
Always returns NIL.

EXAMPLE:

245

16 SC/NAMED-OBJECT 246

;; Manually set the beam of a rhythm object and delete it to see result NIL
(let ((r (make-rhythm ’e)))

(setf (beam r) 1)

(delete-beam r))
=> NIL
;3 Make a rthm-seq-bar object with beam indications, then check the BEAM slot
;; of each rhythm object in the rthm-seq-bar object.
(let ((rsb (make-rthm-segq-bar ’((2 4) - s s e - q))))

(loop for r in (rhythms rsb) collect (beam r)))
=> (1 NIL O NIL)
;3 Make a rthm-seq-bar object with beam indications, delete them all, then
;; check the beam slot of each rhythm object in the rthm-seq-bar object.
(let ((rsb (make-rthm-seq-bar ’((2 4) - s s e - q))))

(loop for r in (rhythms rsb) do (delete-beam r))

(loop for r in (rhythms rsb) collect (beam r)))
=> (NIL NIL NIL NIL)
SYNOPSIS:

(defmethod delete-beam ((r rhythm))

16.2.84 rhythm/delete-marks

[rhythm] [Methods |
ARGUMENTS:

- A rhythm object.
RETURN VALUE:
Always returns NIL.
EXAMPLE:

;; The method returns NIL

(let ((r (make-rhythm (make-event ’c4 ’q))))
(loop for m in ’(a s pizz) do (add-mark-once r m))
(delete-marks r))

16 SC/NAMED-OBJECT 247

=> NIL

;; Create a rhythm object consisting of an event object and print the default
;; contents of the MARKS slot. Set the MARKS slot to contain three marks and
;; print the result. Apply the delete-marks method and print the result.
(let ((r (make-rhythm (make-event ’c4 ’q))))

(print (marks 1))

(loop for m in ’(a s pizz) do (add-mark-once r m))

(print (marks r))

(delete-marks r)

(print (marks r)))

=>
NIL

(PIZZ S A)
NI
SYNOPSIS:

(defmethod delete-marks ((r rhythm))

16.2.85 rhythm/duration-secs

[rhythm] [Methods |
ARGUMENTS:

- A rhythm object.

OPTIONAL ARGUMENTS:

- A numerical tempo value based on quarter-note beats per minute.
RETURN VALUE:

A real number (floating point) representing the absolute duration of the
given rhythm object in seconds.

EXAMPLE:

;3 Determine the duration in seconds of a quarter note with a default tempo of
;55 quarter = 60
(let ((r (make-rhythm ’q)))

(duration-secs r))

16 SC/NAMED-OBJECT

;; Specifying a different tempo results in a different duration in seconds
(let ((r (make-rhythm ’q)))
(duration-secs r 96))

=> 0.625
SYNOPSIS:

(defmethod duration-secs ((r rhythm) &optional (tempo 60))

16.2.86 rhythm/end-slur-p

[rhythm] [Methods |
ARGUMENTS:

- A rhythm object.
RETURN VALUE:

If the ’end-sl mark is indeed found in the MARKS slot of the given rhythm
object, the tail of the list of marks contained in that slot is returned;
otherwise NIL is returned.

EXAMPLE:

;; Create a rhythm object, add a ’end-sl mark and check for it
(let ((r (make-rhythm ’q)))

(add-mark-once r ’end-sl)

(end-slur-p r))

=> (END-SL)

;5 Add several marks to a rhythm object and check for ’end-sl
(let ((r (make-rhythm ’q)))
(loop for m in ’(a s end-sl) do (add-mark-once r m))
(end-slur-p 1))

=> (END-SL S A)
;; Add an ’end-sl mark to a rhythm object, then delete it and check for it

(let ((r (make-rhythm ’q)))
(add-mark-once r ’end-sl)

248

16 SC/NAMED-OBJECT

(rm-marks r ’end-sl)

(end-slur-p r))

=> NIL

SYNOPSIS:

(defmethod end-slur-p ((r rhythm))

16.2.87 rhythm/event

[rhythm] [Classes]
NAME:

event

File:

Class Hierarchy:
Version:
Project:

Purpose:

Author:

Creation date:

$$ Last modified:

event.lsp

named-object -> linked-named-object -> rhythm -> event
1.0.0-beta2

slippery chicken (algorithmic composition)
Implementation of the event class which holds data for
the construction of an audible event, be it a midi note,
a sample (with corresponding sampling-rate conversion
factor) or chord of these types.

It is generally assumed that event instances will be
created from (copies of) rhythm instances by promotion
through the sc-change-class function, hence this class is
derived from rhythm.

Michael Edwards: m@michael-edwards.org

March 19th 2001

20:43:21 Sat May 19 2012 BST

SVN ID: $Id: event.lsp 1982 2012-05-24 15:35:54Z medward2 $

249

16 SC/NAMED-OBJECT

16.2.88 event/add-arrow

[event | [Methods |
DATE:

25 Jun 2011

DESCRIPTION

Adds a start-arrow mark to the given event object and stores text that is
to be attached to the start and end of the given arrow for LilyPond
output. This is a little more complex than the usual mark adding process,
hence this separate method and it not being possible to add arrows to

rthm-seq objects. Not available for CMN.

NB: A separate end-arrow mark should be attached to the note where the end
text is to appear. Use end-arrow for this or (add-mark e ’end-arrow).

ARGUMENTS:

- An event object.
- A start-text string.
- An end-text string.

OPTIONAL ARGUMENTS:

- T or NIL to indicate whether or not to print a warning when trying to
attach an arrow and accompanying marks to a rest. Default = NIL.

RETURN VALUE:
Returns T.

EXAMPLE:

250

;; Create an event object and see that the MARKS-BEFORE and MARKS slots are set

;55 to NIL by default

(let ((e (make-event ’c4 ’q)))
(print (marks-before e))
(print (marks e)))

NIL
NIL

16 SC/NAMED-OBJECT 251

;; Create an event object, apply the add-arrow method, and print the
;; corresponding slots to see the changes.
(let ((e (make-event ’c4 ’q)))

(add-arrow e "start here" "end here")

(print (marks-before e))

(print (marks e)))

=>

((ARROW "start here" "end here"))

(START-ARROW)

;; Create an event object that is a rest and apply the add-arrow method with
;; the optional argument set to T to see the warning printed.

(let ((e (make-event nil ’q)))

(add-arrow e "start here" "end here" t))

=> T
event::add-arrow: add arrow to rest?

SYNOPSIS:

(defmethod add-arrow ((e event) start-text end-text &optional warn-rest)

16.2.89 event/add-clef

[event | [Methods |
ARGUMENTS:

- An event object.
- A clef name (symbol).

OPTIONAL ARGUMENTS:
- (Internal "ignore" arguments only; not needed by the user).
RETURN VALUE:

Returns the contents (list) of the MARKS-BEFORE slot if successful.

Returns NIL if the clef name is already present in the MARKS-BEFORE slot
and is therefore not added.

EXAMPLE:

16 SC/NAMED-OBJECT 252

;5 Successfully adding a clef returns the contents of the MARKS-BEFORE slot
(let ((e (make-event ’c4 ’q)))
(add-clef e ’treble))

=> ((CLEF TREBLE))
;; Returns NIL if the clef name is already present
(let ((e (make-event ’c4 ’q)))
(add-clef e ’treble)
(add-clef e ’treble))
=> NIL
;; Add a clef name to the marks-before slot and check that it’s there
(let ((e (make-event ’c4 ’q)))
(add-clef e ’bass)

(marks-before e))

=> ((CLEF BASS))
SYNOPSIS:

(defmethod add-clef ((e event) clef &optional (delete-others t) ignorel ignore2)

16.2.90 event/add-trill

[event | [Methods |
DATE:

24 Sep 2011

DESCRIPTION
Used for adding pitched trills to printed score output. Adds the necessary
values to the MARKS and MARKS-BEFORE slots of a given event object.

NB: The main interface for adding trills by hand is
slippery-chicken::trill, which is the class-method combination that
should be accessed for this purpose.

NB: This method will check to see if the specified trill marks are already

present in the MARKS and MARKS-BEFORE slots. If they are, the method
will print a warning but will add the specified trill marks anyway.

ARGUMENTS:

16 SC/NAMED-OBJECT 253

- An event object.
- A pitch-symbol for the trill note.

OPTIONAL ARGUMENTS:

- T or NIL to indicate whether or not to print a warning when attaching
trill information to a rest. Default = NIL.

RETURN VALUE:

Always returns T.

NB: At the moment the method will also print the reminder warning that this
is a LilyPond-only mark.

EXAMPLE:

;; Create an event object and print the contents of the MARKS-BEFORE and MARKS
;; slots to see that they’re empty by default.
(let ((e (make-event ’c4 ’q)))

(print (marks-before e))

(print (marks e)))

=>
NIL
NIL

;; Create an event object, add a trill to the note ’D4, and print the
;; corresponding slots to see the changes
(let ((e (make-event ’c4 ’q)))

(add-trill e ’d4)

(print (marks-before e))

(print (marks e)))

=>
WARNING:
rhythm: :validate-mark: no CMN mark for BEG-TRILL-A (but adding anyway) .

(BEG-TRILL-A)
((TRILL-NOTE D4))

;5 By default the method adds prints no warning when adding a mark to a rest
;3 (though it still prints the warning that there is no CMN mark)
(let ((e (make-event nil ’q)))

(add-trill e ’d4)

16 SC/NAMED-OBJECT 254

(print (marks-before e))
(print (marks e)))

=>
WARNING:
rhythm: :validate-mark: no CMN mark for BEG-TRILL-A (but adding anyway) .

(BEG-TRILL-A)
((TRILL-NOTE D4))

;; Set the optional argument to T to have the method print a warning when
;; attaching a mark to a rest
(let ((e (make-event nil ’q)))

(add-trill e ’d4 t)

(print (marks-before e))

(print (marks e)))

=>

event::add-trill: add trill to rest?

WARNING:

rhythm: :validate-mark: no CMN mark for BEG-TRILL-A (but adding anyway) .

(BEG-TRILL-A)
((TRILL-NOTE D4))

;3 Adding a trill that is already there will result in a warning being printed
;; but will add the mark anyway
(let ((e (make-event ’c4 ’q)))

(loop repeat 4 do (add-trill e ’d4))

(print (marks-before e))

(print (marks e)))

=>
WARNING:
rhythm: :add-mark: (TRILL-NOTE D4) already present but adding again!:
[...]
(BEG-TRILL-A BEG-TRILL-A BEG-TRILL-A BEG-TRILL-A)
((TRILL-NOTE D4) (TRILL-NOTE D4) (TRILL-NOTE D4) (TRILL-NOTE D4))

SYNOPSIS:

(defmethod add-trill ((e event) trill-note &optional warn-rest)

16 SC/NAMED-OBJECT 255

16.2.91 event/delete-clefs

[event | [Methods |
ARGUMENTS:

- An event object.
OPTIONAL ARGUMENTS:

- T or NIL to indicate whether or not to print a warning when there are no
clef marks to delete.
- (Other internal "ignore" arguments only; not needed by the user).

RETURN VALUE:
Always NIL.

EXAMPLE:

;5 Returns NIL when no clef marks are found to delete, and prints a warning by
;3 default.
(let ((e (make-event ’c4 ’q)))

(delete-clefs e))

=> NIL
WARNING: event::delete-clefs: no clef to delete:
[...]

;; Setting the optional WARN argument to T suprresses the warning when no clefs
;; are found.
(let ((e (make-event ’c4 ’q)))

(delete-clefs e nil))

=> NIL

;3 Also returns NIL when successful

(let ((e (make-event ’c4 ’q)))
(add-clef e ’treble)
(delete-clefs e))

=> NIL
;; Create an event, add a clef, print the MARKS-BEFORE slot, delete the event,

;3 print MARKS-BEFORE again to make sure it’s gone
(let ((e (make-event ’c4 ’q)))

16 SC/NAMED-OBJECT 256

(add-clef e ’treble)
(print (marks-before e))
(delete-clefs e)

(print (marks-before e)))

=>
((CLEF TREBLE))
NIL

SYNOPSIS:

(defmethod delete-clefs ((e event) &optional (warn t) ignorel ignore2)

16.2.92 event/delete-written

[event | [Methods |
ARGUMENTS:

- An event object.

RETURN VALUE:

Always returns NIL.
EXAMPLE:

;; Create an event object, print the contents of the written-pitch-or-chord
;; slot to see it’s set to NIL, set-written to -2, print the contents of the
;; corresponding slot to see the data of the newly created pitch object,
;; delete-written, print the contents of the written-pitch-or-chord slot to see
;5 it’s empty.
(let ((e (make-event ’c4 ’q)))

(print (written-pitch-or-chord e))

(set-written e -2)

(print (data (written-pitch-or-chord e)))

(delete-written e)

(print (written-pitch-or-chord e)))

=>
NIL

BF3
NIL

SYNOPSIS:

(defmethod delete-written ((e event))

16 SC/NAMED-OBJECT

16.2.93 event/end-arrow

[event | [Methods |
ARGUMENTS:

- An event object.

RETURN VALUE:

Returns T.

EXAMPLE:

;; Returns T

(let ((e (make-event ’c4 ’q)))

(end-arrow e))

=> T
WARNING:

rhythm: :validate-mark: no CMN mark for END-ARROW (but adding anyway).

;; Create an event object, add end-arrow, and print the MARKS and MARKS-SLOTS

;; to see the result

(let ((e (make-event ’c4 ’q)))
(end-arrow e)
(print (marks-before e))
(print (marks e)))

=>

NIL

(END-ARROW)

SYNOPSIS:

(defmethod end-arrow ((e event))

16.2.94 event/end-trill

[event | [Methods |
DATE:

24 Sep 2011

DESCRIPTION

Adds an ’end-trill-a mark to the MARKS slot of the given event object.

257

16 SC/NAMED-OBJECT 258

ARGUMENTS:

- An event object.

RETURN VALUE:

T

EXAMPLE:

;; The end-trill method returns T

(let ((e (make-event ’c4 ’q)))
(end-trill e))

=> T

;; Add an ’end-trill-a and check the MARKS slot to see that it’s there

(let ((e (make-event ’c4 ’q)))
(end-trill e)
(marks e))

=> (END-TRILL-A)

SYNOPSIS:

(defmethod end-trill ((e event))

16.2.95 event/enharmonic

[event | [Methods |
ARGUMENTS:

- An event object.
OPTIONAL ARGUMENTS:

keyword arguments:

- :written. T or NIL to indicate whether the test is to handle the written
or sounding pitch in the event. T = written. Default = NIL.

- :force-naturals. T or NIL to indicate whether to force "natural" note
names that contain no F or S in their name to convert to their enharmonic
equivalent (ie, B3 = CF4)

RETURN VALUE:

16 SC/NAMED-OBJECT 259

An event object.
EXAMPLE:

;5 The method alone returns an event object
(let ((e (make-event ’cs4d ’q)))
(enharmonic e))

=>
EVENT: start-time: NIL, end-time: NIL,
[...]

;3 Create an event, change it’s note to the enharmonic equivalent, and print
5 it.
(let ((e (make-event ’cs4 ’q)))

(enharmonic e)

(data (pitch-or-chord e)))

=> DF4

;5 Without the :force-naturals keyword, no "white-key" note names convert to
;3 enharmonic equivalents
(let ((e (make-event ‘b3 ’q)))

(enharmonic e)

(data (pitch-or-chord e)))

=> B3
;3 Set the :force-naturals keyword argument to T to enable switching white-key
;; note-names to enharmonic equivalents
(let ((e (make-event ’b3 ’q)))
(enharmonic e :force-naturals t)
(data (pitch-or-chord e)))
=> CF4
SYNOPSIS:

(defmethod enharmonic ((e event) &key written force-naturals
;3 1l-based
chord-note-ref)

16.2.96 event/event-distance

[event | [Methods |

16 SC/NAMED-OBJECT

ARGUMENTS:

- A first event object.
- A second event object.

OPTIONAL ARGUMENTS:

- T or NIL for whether the the value should be returned as an absolute
value (i.e., always positive). Default = NIL.

RETURN VALUE:
A number.
EXAMPLE:

;; The semitone distance between two single pitches in ascending direction
(let ((el (make-event ’c4 ’q))
(e2 (make-event ’e4 ’q)))
(event-distance el e2))

=> 4.0

;; The semitone distance between two single pitches in descending direction
(let ((el (make-event ’c4 ’q))
(e2 (make-event ’e4 ’q)))
(event-distance e2 el))

=> -4.0

;3 Set the optional argument to T to get the absolute distance (positive
;; number)
(let ((el (make-event ’c4 ’q))
(e2 (make-event ’e4 ’q)))
(event-distance e2 el t))

=> 4.0
;; The semitone distance between two chords in ascending direction
(let ((el (make-event ’(c4 ed g4) ’q))
(e2 (make-event ’(d4 f4 ad) ’q)))
(event-distance el e2))

=> 9.0

SYNOPSIS:

260

16 SC/NAMED-OBJECT 261

(defmethod event-distance ((el event) (e2 event) &optional absolute)

16.2.97 event/event-p

[event | [Functions]

ARGUMENTS:

- An object.

RETURN VALUE:

T if the tested object is indeed an event object, otherwise NIL.
EXAMPLE:

;3 Create an event and then test whether it is an event object
(let ((e (make-event ’c4 ’q)))
(event-p e))

=> T

;3 Create a non-event object and test whether it is an event object
(let ((e (make-rhythm 4)))
(event-p e))

=> NIL
;; The make-rest function also creates an event
(let ((e (make-rest 4)))
(event-p e))
=T
;5 The make-punctuation-events, make-events and make-events2 functions create
;3 lists of events, not events themselves.
(let ((e (make-events ’((g4 q) e s))))

(event-p e))

=> NIL
SYNOPSIS:

(defun event-p (thing)

16 SC/NAMED-OBJECT 262

16.2.98 event/flat-p

[event | [Methods |
ARGUMENTS:

- An event object.
OPTIONAL ARGUMENTS:

- T or NIL to indicate whether the test is to handle the written or
sounding pitch in the event. T = written. Default = NIL.

RETURN VALUE:

Returns T if the note tested has a flat, otherwise NIL (ie, is natural or
has a sharp).

EXAMPLE:
;; Returns T when the note is flat
(let ((e (make-event ’df4d ’q)))
(flat-p e))
=> T
;; Returns NIL when the note is not flat (ie, is sharp or natural)
(let ((e (make-event ’c4 ’q)))
(flat-p e))

=> NIL

(let ((e (make-event ’cs4 ’q)))
(flat-p e))

=> NIL
SYNOPSIS:

(defmethod flat-p ((e event) &optional written)

16.2.99 event/force-artificial-harmonic

[event | [Methods |
ARGUMENTS:

16 SC/NAMED-OBJECT 263

- An event object.

RETURN VALUE:

Always returns NIL.
EXAMPLE:

;3 The method returns NIL.
(let ((e (make-event ’c7 ’q)))
(force-artificial-harmonic e))

=> NIL

;; Create an event object, apply force-artificial-harmonic, then get the new
;5 pitch material
(let ((e (make-event ’c7 ’q)))
(force-artificial-harmonic e)
(loop for p in (data (pitch-or-chord e)) collect (data p)))
=> (C5 Fb)
;; Create an event object, apply force-artificial-harmonic, then get the marks
;; attached to each note in the object to see the ’flag-head
(let ((e (make-event ’c7 ’q)))
(force-artificial-harmonic e)
(loop for p in (data (pitch-or-chord e)) collect (marks p)))
=> (NIL (FLAG-HEAD))
SYNOPSIS:

(defmethod force-artificial-harmonic ((e event) &optional instrument)

16.2.100 event/force-rest

[event | [Methods |
ARGUMENTS:

- An event object.
RETURN VALUE:

- An event object

16 SC/NAMED-OBJECT 264

EXAMPLE:

;5 The method returns an event object.
(let ((e (make-event ’c4 ’q)))
(force-rest e))

=>
EVENT: start-time: NIL, end-time: NIL,
[...]

;; Create an event object, apply force-rest, then print the corresponding slots
;3 to see the effectiveness of the method
(let ((e (make-event ’c4 ’q)))

(force-rest e)

(print (pitch-or-chord e))

(print (written-pitch-or-chord e))

(print (is-rest e)))

NIL
NIL
T

SYNOPSIS:

(defmethod force-rest :after ((e event))

16.2.101 event/get-amplitude

[event | [Methods |
ARGUMENTS:

- An event object.

OPTIONAL ARGUMENTS:

- T or NIL to indicate whether the amplitude value is to be returned as a
standard digital amplitude (a number between 0.0 and 1.0) or as a

standard MIDI velocity value (a whole number between 0 and 127). T = MIDI
value. Default = NIL.

RETURN VALUE:

If the optional argument is set to NIL, returns a real number.

16 SC/NAMED-OBJECT 265

If the optional argument is set to T, returns a whole number (and a
remainder) .

EXAMPLE:

;; Get the amplitude as a decimal value. (Each new event object has a default
;; amplitude of 0.7).
(let ((e (make-event ’c4 ’q)))
(get-amplitude e))
=> 0.7
;3 Get the amplitude as a rounded MIDI value.
(let ((e (make-event ’c4 ’q)))
(get-amplitude e t))
=> 89, -0.10000000000000853
SYNOPSIS:

(defmethod get-amplitude ((e event) &optional (midi nil))

16.2.102 event/get-clef

[event | [Methods |
ARGUMENTS:

- An event object.

OPTIONAL ARGUMENTS:

- (Internal "ignore" arguments only; not needed by the user).
RETURN VALUE:

Returns the given clef name as a symbol if successful.

Returns NIL if there is no clef name found in the MARKS-BEFORE slot of the
given event object.

EXAMPLE:

16 SC/NAMED-OBJECT

;3 Returns NIL when no clef is found
(let ((e (make-event ’c4 ’q)))
(get-clef e))

=> NIL
;5 Returns the clef name as symbol when successful.
(let ((e (make-event ’c4 ’q)))
(add-clef e ’treble)
(get-clef e))
=> TREBLE

SYNOPSIS:

(defmethod get-clef ((e event) &optional ignorel ignore2 ignore3)

16.2.103 event/get-degree

[event | [Methods |
ARGUMENTS:

- an event object
OPTIONAL ARGUMENTS:

keyword arguments:

- :written. T or NIL to indicate whether to use the written (in the case of
transposing instruments) or sounding pitches. T = written. Default = NIL.

- :sum. T or NIL to indicate whether to return the sum of the degrees
instead of a list (see below). T = degrees. Default = NIL.

RETURN VALUE:

By default this returns a list (even if it’s a single pitch), unless :sum T
whereupon it will return a single value: the sum of the degrees if a chord,
otherwise just the degree. A rest would return ’(0) or O.

EXAMPLE:

;55 NB This uses the quarter-tone scale so degrees are double what they would
;33 be in the chromatic-scale.
(let ((event (make-event ’(cs4 d4) ’e))

(rest (make-rest ’e)))

266

16 SC/NAMED-OBJECT 267

(print (get-degree event))
(print (get-degree rest))
(get-degree event :sum t))

(122 124)

(0

246

SYNOPSIS:

(defmethod get-degree ((e event) &key written sum)

16.2.104 event/get-dynamic

[event | [Methods |
ARGUMENTS:

- An event object.
RETURN VALUE:

The symbol representing the dynamic if there is one attached to that event,
otherwise NIL.

EXAMPLE:

;3 The method returns just the dynamic marking from the MARKS list, as a symbol
(let ((e (make-event ’c4 ’q)))

(add-mark-once e ’ppp)

(add-mark-once e ’pizz)

(get-dynamic e))

=> PPP
;5 The method returns NIL if there is no dynamic in the MARKS list
(let ((e (make-event ’c4 ’q)))
(add-mark-once e ’pizz)
(get-dynamic e))
=> NIL

SYNOPSIS:

(defmethod get-dynamic ((e event))

16 SC/NAMED-OBJECT

16.2.105 event/get-dynamics

[event | [Methods |
ARGUMENTS:

- An event object.
RETURN VALUE:

A list containing the dynamics stored in the MARKS slot of the rhythm
object within the given event object. NIL is returned if no dynamic marks
are attached to the given event object.

EXAMPLE:

;3 Create an event object and get the dynamics attached to that object. These
;3 are NIL by default (unless otherwise specified).
(let ((e (make-event ’c4 ’q)))

(get-dynamics e))

=> NIL

;; Create an event object, add one dynamic and one non-dynamic mark, print all
;; marks, then retrieve only the dynamics.
(let ((e (make-event ’c4 ’q)))

(add-mark-once e ’ppp)

(add-mark-once e ’pizz)

(print (marks e))

(get-dynamics e))

=>
(PIZZ PPP)
(PPP)

;5 Should multiple dynamics have become attached to the same event object,
;; get—dynamics will return all dynamics present in the MARKS slot
(let ((e (make-event ’c4 ’q)))

(add-mark-once e ’pizz)

(add-mark-once e ’ppp)

(push ’fff (marks e))

(print (marks e))

(get-dynamics e))

=> (FFF PPP)

SYNOPSIS:

268

16 SC/NAMED-OBJECT 269

(defmethod get-dynamics ((e event))

16.2.106 event/get-midi-channel

[event | [Methods |
ARGUMENTS:

- An event object.
RETURN VALUE:
An integer representing the given midi-channel value.
EXAMPLE:
;5 The default midi-channel value for a newly created event-object is NIL
;55 unless otherwise specified.
(let ((e (make-event ’c4 ’q)))
(get-midi-channel e))
=> NIL
;; Create an event object, set its MIDI-channel and retrieve it
(let ((e (make-event ’c4 ’q)))
(set-midi-channel e 11 12)
(get-midi-channel e))
=> 11

SYNOPSIS:

(defmethod get-midi-channel ((e event))

16.2.107 event/get-pitch-symbol

[event | [Methods |
ARGUMENTS:

- An event object.
OPTIONAL ARGUMENTS:

- T or NIL to indicate whether the test is to handle the event’s
written or sounding pitch. T = written. Default = T.

16 SC/NAMED-OBJECT 270

RETURN VALUE:

A symbol, if the event object consists of only a single pitch, otherwise a
list of pitch symbols if the event object consists of a chord.

EXAMPLE:

;; Get the pitch symbol of an event object with a single pitch
(let ((e (make-event ’c4 ’q)))
(get-pitch-symbol e))
=> C4
;5 Getting the pitch symbol of an event object that consists of a chord returns
;; a list of pitch symbols
(let ((e (make-event ’(c4 e4d g4) ’q)))
(get-pitch-symbol e))
=> (C4 E4 G4)
SYNOPSIS:

(defmethod get-pitch-symbol ((e event) &optional (written t))

16.2.108 event/has-mark-before

[event | [Methods |

ARGUMENTS: OPTIONAL ARGUMENTS: RETURN VALUE: EXAMPLE: SYN-
OPSIS:

(defmethod has-mark-before ((e event) mark)

16.2.109 event/highest

[event | [Methods |
ARGUMENTS:

- An event object.
RETURN VALUE:

A pitch object.

16 SC/NAMED-OBJECT

EXAMPLE:

;; Returns a pitch object
(let ((e (make-event ’c4 ’q)))
(highest e))

PITCH: frequency: 261.6255569458008, midi-note: 60, midi-channel: NIL
pitch-bend: 0.0
degree: 120, data-consistent: T, white-note: C4
nearest-chromatic: C4
src: 1.0, src-ref-pitch: C4, score-note: C4
qtr-sharp: NIL, qtr-flat: NIL, qtr-tome: NIL,
micro-tone: NIL,
sharp: NIL, flat: NIL, natural: T,
octave: 4, cbths: 0, no-8ve: C, no-8ve-no-acc: C
show-accidental: T, white-degree: 28,
accidental: N,
accidental-in-parentheses: NIL, marks: NIL
LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL
NAMED-OBJECT: id: C4, tag: NIL,
data: C4

;5 Returns the highest note of a chord object within an event object
(let ((e (make-event ’(d4 fs4 ad) ’q)))

(data (highest e)))
=> A4

SYNOPSIS:

(defmethod highest ((e event))

16.2.110 event/inc-duration

[event | [Methods |

ARGUMENTS:

- An event object.

- A value that is the increment in seconds by which the duration is to be
extended.

RETURN VALUE:

The new duration in seconds.

271

16 SC/NAMED-OBJECT

EXAMPLE:

;55 Create a slippery-chicken object, assign a variable to one of the event
;55 objects it contains, print the corresponding duration slots; apply
;53 inc—duration and print the corresponding duration slots again to see the
;55 Change.
(let* ((mini
(make-slippery-chicken
’+mini+
:ensemble ’(((vc (cello :midi-channel 1))))
:set-palette > ((1 ((gs3 as3 b3))))
:set-map ’((1 (1)))
:rthm-seg-palette ’((1 ((((2 4) q (e) s (32) 32))
:pitch-seq-palette ((1 2 3)))))
:rthm-seq-map ’((1 ((vc (1)))))))
(e (get-event mini 1 3 ’vc)))
(print (end-time e))
(print (duration-in-tempo e))
(print (compound-duration-in-tempo e))
(inc-duration e 7.0)
(print (end-time e))
(print (duration-in-tempo e))
(print (compound-duration-in-tempo e)))

\4

.75
.25
.25
.75
.25
.25

~N N0 O o~

SYNOPSIS:

(defmethod inc-duration ((e event) inc)

16.2.111 event/is-chord

[event | [Methods |
ARGUMENTS:

- An event object.

RETURN VALUE:

272

16 SC/NAMED-OBJECT

- If the given event object is a chord, the method returns a number that is

the number of notes in the chord.

- Returns NIL if the given event object is not a chord.

EXAMPLE:

;; Returns NIL if not a chord

(let ((e (make-event ’c4 ’q)))
(is-chord e))

=> NIL

;3 If a chord, returns the number of notes in the chord

(let ((e (make-event ’(c4 ed g4) ’q)))
(is-chord e))

=> 3

;; A rest is not a chord

(let ((e (make-rest ’q)))
(is-chord e))

=> NIL

SYNOPSIS:

(defmethod is-chord ((e event))

16.2.112 event/is-dynamic

[event | [Functions |

ARGUMENTS:
- A symbol.

RETURN VALUE:

NIL if the specified mark is not found on the predifined list of possible
dynamic marks, otherwise the tail of the list of possible dynamics starting

with the given dynamic.
EXAMPLE:

(is-dynamic ’pizz)

273

16 SC/NAMED-OBJECT 274

=> NIL

(is-dynamic ’f)

=> (F FF FFF FFFF)
SYNOPSIS:

(defun is-dynamic (mark)

16.2.113 event/is-single-pitch

[event | [Methods |
ARGUMENTS:

- An event object.
RETURN VALUE:

Returns T if the given event object consists of a single pitch, otherwise
returns NIL.

EXAMPLE:

;; Returns T if the event object consists of a single pitch
(let ((e (make-event ’c4 ’q)))
(is-single-pitch e))

=T
;; Returns NIL if the event object is a chord
(let ((e (make-event ’(c4 e4 g4) ’q)))
(is-single-pitch e))
=> NIL
;5 Also returns NIL if the event object is a rest
(let ((e (make-rest ’q)))
(is-single-pitch e))
=> NIL

SYNOPSIS:

(defmethod is-single-pitch ((e event))

16 SC/NAMED-OBJECT 275

16.2.114 event/lowest

[event | [Methods |
ARGUMENTS:

- An event object.
RETURN VALUE:
A pitch object.
EXAMPLE:

;; Returns a pitch object
(let ((e (make-event ’c4 ’q)))
(lowest e))

PITCH: frequency: 261.6255569458008, midi-note: 60, midi-channel: NIL
pitch-bend: 0.0
degree: 120, data-consistent: T, white-note: C4
nearest-chromatic: C4
src: 1.0, src-ref-pitch: C4, score-note: C4
qtr-sharp: NIL, qtr-flat: NIL, qtr-tone: NIL,
micro-tone: NIL,
sharp: NIL, flat: NIL, natural: T,
octave: 4, cbths: O, no-8ve: C, no-8ve-no-acc: C
show-accidental: T, white-degree: 28,
accidental: N,
accidental-in-parentheses: NIL, marks: NIL
LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL
NAMED-OBJECT: id: C4, tag: NIL,
data: C4

;; Returns the lowest note of a chord object within an event object
(let ((e (make-event ’(d4 fs4 ad) ’q)))

(data (lowest e)))
=> D4

SYNOPSIS:

(defmethod lowest ((e event))

16

SC/NAMED-OBJECT

16.2.115 event/make-event

[event | [Functions]

ARGUMENTS:

A pitch or chord. This can be one of those objects (will be added to the
pitch-or-chord slot without cloning), or a pitch symbol or list of pitch
symbols (for a chord).

The event’s rhythm (e.g. ’e). If this is a number, its interpretation is
dependent on the value of duration (see below). NB if this is a rhythm
object, it will be cloned.

OPTIONAL ARGUMENTS:

keyword arguments:

:start-time. The start time of the event in seconds. Default = NIL.
:is-rest. Set to T or NIL to indicate whether or not the given event is a
rest. Default = NIL. NB: The make-rest method is better suited to making
rests; however, if using make-event to do so, the pitch-or-chord slot
must be set to NIL.

:is-tied-to. This argument is for score output and playing purposes. Set
to T or NIL to indicate whether this event is tied to the previous event
(i.e. it won’t sound indpendently). Default = NIL.

:duration. T or NIL to indicate whether the specified duration of the
event has been stated in absolute seconds, not a known rhythm like

’e. Thus (make-event ’c4 4 :duration nil) indicates a quarter note with
duration 1, but (make-event ’(c4 d4) 4 :duration t) indicates a whole
note with an absolute duration of 4 seconds (both assuming a tempo of
60) . Default = NIL.

:amplitude sets the amplitude of the event. Possible values span from 0.0
(silent) to maximum of 1.0. Default = 0.7.

:tempo. A number to indicate the tempo of the event as a normal bpm
value. Default = 60. This argument is only used when creating the rhythm
slots (e.g. duration).

:midi-channel. A number from O to 127 indicating the MIDI channel on
which the event should be played back. Default = NIL.
:microtones-midi-channel. If the event is microtonal, this argument
indicates the MIDI-channel to be used for the playback of the microtonal
notes. Default = NIL.

RETURN VALUE:

An event object.

EXAMPLE:

276

16 SC/NAMED-OBJECT 277

;3 A quarter-note (crotchet) C
(make-event ’c4 4)

=>
EVENT: start-time: NIL, end-time: NIL,
duration-in-tempo: 0.0,
compound-duration-in-tempo: 0.0,
amplitude: 0.7,
bar-num: -1, marks-before: NIL,
tempo-change: NIL
instrument-change: NIL
display-tempo: NIL, start-time-qtrs: -1,
midi-time-sig: NIL, midi-program-changes: NIL,
8va: 0
pitch-or-chord:
PITCH: frequency: 261.6255569458008, midi-note: 60, midi-channel: NIL
pitch-bend: 0.0
degree: 120, data-consistent: T, white-note: C4
nearest-chromatic: C4
src: 1.0, src-ref-pitch: C4, score-note: C4
qtr-sharp: NIL, qtr-flat: NIL, qtr-tome: NIL,
micro-tone: NIL,
sharp: NIL, flat: NIL, natural: T,
octave: 4, cbths: 0, no-8ve: C, no-8ve-no-acc: C
show-accidental: T, white-degree: 28,
accidental: N,
accidental-in-parentheses: NIL, marks: NIL
LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL
NAMED-OBJECT: id: C4, tag: NIL,
data: C4
written-pitch-or-chord: NIL
RHYTHM: value: 4.0, duration: 1.0, rq: 1, is-rest: NIL, score-rthm: 4.0f0,
undotted-value: 4, num-flags: O, num-dots: O, is-tied-to: NIL,
is-tied-from: NIL, compound-duration: 1.0, is—grace-note: NIL,
needs-new-note: T, beam: NIL, bracket: NIL, rqg-note: NIL,
rqq-info: NIL, marks: NIL, marks-in-part: NIL, letter-value: 4,
tuplet-scaler: 1, grace-note-duration: 0.05
LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL
NAMED-OBJECT: id: 4, tag: NIL,
data: 4

;; Create a whole-note (semi-breve) chord, then print its data, value, duration
;; and pitch content
(let ((e (make-event ’(c4 e4 g4) 4 :duration t)))

(print (data e))

(print (value e))

16 SC/NAMED-OBJECT 278

(print (duration e))
(print (loop for p in (data (pitch-or-chord e)) collect (data p))))

=>
W
1.0£0
4.0
(C4 E4 G4)
;; Create a single-pitch quarter-note event which is tied to, plays back on
;; MIDI channel 1 and has an amplitude of 0.5, then print these values by
;; accessing the corresponding slots.
(let ((e (make-event ’c4 4

tis-tied-to t

:midi-channel 1

:amplitude 0.5)))

(print (is-tied-to e))

(print (midi-channel (pitch-or-chord e)))
(print (amplitude e)))

O~ 1 1

;3 Create an event object that consists of a quarter-note rest and print the
;; contents of the corresponding slots
(let ((e (make-event nil ’q :is-rest t)))

(print (pitch-or-chord e))

(print (data e))

(print (is-rest e)))

SYNOPSIS:

(defun make-event (pitch-or-chord rthm &key
start-time
is-rest
is-tied-to
duration
midi-channel
microtones-midi-channel

16 SC/NAMED-OBJECT

(amplitude 0.7)
(tempo 60))

16.2.116 event/make-events

[event | [Functions |

ARGUMENTS:
- A list.
OPTIONAL ARGUMENTS:

- A whole number indicating the MIDI channel on which the event is to be
played.

- A whole number indicating the MIDI channel on which microtonal pitches of
the event are to be played.

RETURN VALUE:
A list.

EXAMPLE:

;; Create a list of events including a quarter note, two rests, and a chord,
;; then print-simple its contents
(let ((e (make-events ’((g4 q) e s ((d4 fs4 ad) s)))))

(loop for i in e do (print-simple i)))

=>
G4 Q, rest E, rest S, (D4 FS4 A4) S,

;; Create a list of events to be played on MIDI-channel 3, then check the MIDI
;; channels of each sounding note
(let ((e (make-events ’((g4d q) e s (a4 s) q e (b4 s)) 3)))
(loop for i in e
when (not (is-rest i))
collect (midi-channel (pitch-or-chord i))))

=> (3 3 3)
SYNOPSIS:

(defun make-events (data-list &optional midi-channel microtones-midi-channel)

279

16 SC/NAMED-OBJECT 280

16.2.117 event/make-events2

[event | [Functions]

ARGUMENTS:

- A list of rhythms.
- A list of note names (including NIL or R for rests).

OPTIONAL ARGUMENTS:

- A whole number value to indicate the MIDI channel on which to play back
the event.

- A whole number value to indicate the MIDI channel on which to play back
microtonal pitch material for the event.

RETURN VALUE:
A list.

EXAMPLE:

;; Create a make-events2 list and use the print-simple function to retrieve its

;3 contents.

(let ((e (make-events2 ’(q e e. h+s 32 g+te) ’(cs4 d4 (e4 g4 b5) nil a3 r))))
(loop for i in e do (print-simple i)))

=>
CS4 Q, D4 E, (E4 G4 B5) E., rest H, rest S, A3 32, rest Q, rest TE,

;3 Create a list of events using make-events2, indicating they be played back
;; on MIDI-channel 3, then print the corresponding slots to check it
(let ((e (make-events2 ’(q e. h+s 32 g+te) ’(cs4 b5 nil a3 r) 3)))
(loop for i in e
when (not (is-rest i))
collect (midi-channel (pitch-or-chord i))))

=>
(3 3 3)

SYNOPSIS:

(defun make-events2 (rhythms pitches
&optional midi-channel microtones-midi-channel)

16 SC/NAMED-OBJECT 281

16.2.118 event/make-punctuation-events

[event | [Functions]

ARGUMENTS:

- A list of grouping lengths.
- A rhythm.
- A note name or list of note names.

RETURN VALUE:
A list.
EXAMPLE:

;; Create a list of three groups that are 2, 3, and 5 16th-notes long, with the
;; first note of each grouping being a C4, then print-simple it’s contents.
(let ((pe (make-punctuation-events ’(2 3 5) ’s ’c4)))

(loop for e in pe do (print-simple e)))

=>
C4 S, rest S, C4 S, rest S, rest S, C4 S, rest S, rest S, rest S, rest S,
;; Create a list of "punctuated" events using a list of note names. Once the
;; final note name is reached, it is repeated for all remaining non-rest
;3 Trhythms.
(let ((pe (make-punctuation-events ’(2 3 5 8) ’q ’(c4 e4))))
(loop for e in pe do (print-simple e)))
=>

C4 Q, rest Q, E4 Q, rest Q, rest Q, E4 Q, rest Q, rest Q, rest Q, rest Q, E4 Q,
rest Q, rest Q, rest Q, rest Q, rest Q, rest Q, rest Q,

SYNOPSIS:

(defun make-punctuation-events (distances rhythm notes)

16.2.119 event/make-rest

[event | [Functions]

ARGUMENTS:

- A rhythm (duration).

16 SC/NAMED-OBJECT

OPTIONAL ARGUMENTS:

keyword arguments:

- :start-time.

- :tempo. Beats per minute. Default = 60.

RETURN VALUE:

- An event object.

EXAMPLE:

;3 Make an event object consisting of a quarter rest
(make-rest 4)

=>
EVENT:

RHYTHM:

start-time: NIL, end-time: NIL,
duration-in-tempo: 0.0,
compound-duration-in-tempo: 0.0,

amplitude: 0.7,

bar-num: -1, marks-before: NIL,

tempo-change: NIL

instrument-change: NIL

display-tempo: NIL, start-time-qtrs: -1,
midi-time-sig: NIL, midi-program-changes: NIL,
8va: 0

pitch-or-chord: NIL

written-pitch-or-chord: NIL

value: 4.0, duration: 1.0, rq: 1, is-rest: T,
undotted-value: 4, num-flags: O, num-dots: O,

A number that is the start-time of the event in seconds.
- :duration. T or NIL. T indicates that the duration given is a value of
absolute seconds rather than a known rhythm (e.g. ’e). Default = NIL.

score-rthm: 4.0£f0,
is-tied-to: NIL,

is-tied-from: NIL, compound-duration: 1.0, is—grace-note: NIL,

needs—new-note: NIL, beam: NIL, bracket: NIL,

rqq-note: NIL,

rqq-info: NIL, marks: NIL, marks-in-part: NIL, letter-value: 4,

tuplet-scaler: 1, grace-note-duration: 0.05

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL
NAMED-OBJECT: id: 4, tag: NIL,

data: 4

282

;; Make an event object consisting of 4 seconds of rest (rather than a quarter;

;; indicated by the :duration t) starting at time-point 13.7 seconds, then

;; print the corresponding slot values.
(let ((e (make-rest 4 :start-time 13.7 :duration t)))
(print (is-rest e))

16 SC/NAMED-OBJECT 283

(print (data e))

(print (duration e))
(print (value e))
(print (start-time e)))

.0
.0£0
13.7

o o=

SYNOPSIS:

(defun make-rest (rthm &key start-time duration (tempo 60))

16.2.120 event/natural-p

[event | [Methods |
ARGUMENTS:

- An event object.
OPTIONAL ARGUMENTS:

- T or NIL to indicate whether the test is to handle the written or
sounding pitch in the event. T = written. Default = NIL.

RETURN VALUE:

Returns T if the note tested is natural, otherwise NIL (ie, has a flat or
has a sharp).

EXAMPLE:

;; Returns T when the note is natural
(let ((e (make-event ’c4 ’q)))
(natural-p e))

=T
;3 Returns NIL when the note is not natural (ie, is sharp or flat)

(let ((e (make-event ’cs4d ’q)))
(natural-p e))

16 SC/NAMED-OBJECT 284

=> NIL

(let ((e (make-event ’df4 ’q)))
(natural-p e))

=> NIL
SYNOPSIS:

(defmethod natural-p ((e event) &optional written)

16.2.121 event/no-accidental

[event | [Methods |
ARGUMENTS:

- An event object.

RETURN VALUE:

Always returns NIL.
EXAMPLE:

;5 The SHOW-ACCIDENTAL slot is automatically set to T on new event objects
;; that consist of a sharp or flat note.
(let ((e (make-event ’cs4 ’q)))

(show-accidental (pitch-or-chord e)))

=> T
;; The method no-accidental sets the SHOW-ACCIDENTAL slot to NIL (and the
;3 ACCIDENTAL-IN-PARENTHESES if not already).
(let ((e (make-event ’cs4 ’q)))
(no-accidental e)
(show-accidental (pitch-or-chord e)))
=> NIL
SYNOPSIS:

(defmethod no-accidental ((e event))

16 SC/NAMED-OBJECT 285

16.2.122 event/output-midi

[event | [Methods |
ARGUMENTS:

- An event object.
OPTIONAL ARGUMENTS:

- A decimal number that is the number of seconds to offset the timing of
the MIDI output.

- A decimal number that is to override any other existing event object data
for amplitude.

RETURN VALUE:
Returns the data required for MIDI output.

EXAMPLE:

;5 Simple use
(let ((e (make-event ’c4d ’q
:start-time 0.0
:midi-channel 1)))
(output-midi e))

=> (#i(midi time 0.0 keynum 60 duration 1.0 amplitude 0.7 channel 0))
;5 Specifying time offset and forced amplitude value
(let ((e (make-event ’c4 ’q
:start-time 0.0
:midi-channel 1)))
(output-midi e 0.736 0.3))
=> (#i(midi time 0.736 keynum 60 duration 1.0 amplitude 0.3 channel 0))

SYNOPSIS:

(defmethod output-midi ((e event) &optional (time-offset 0.0) force-velocity)

16.2.123 event/pitch-

[event | [Methods |
ARGUMENTS:

16 SC/NAMED-OBJECT 286

- A first event object.
- A second event object.

RETURN VALUE:
A number.
EXAMPLE:

(let ((el (make-event ’c4 ’q))
(e2 (make-event ‘a3 ’q)))
(pitch- el e2))
=> 3.0
;5 Subtracting the upper from the lower note returns a negative number
(let ((el (make-event ’a3 ’q))
(e2 (make-event ’c4 ’q)))
(pitch- el e2))
=> -3.0
SYNOPSIS:

(defmethod pitch- ((el event) (e2 event))

16.2.124 event/remove-dynamics

[event | [Methods |
ARGUMENTS:

- An event object.
RETURN VALUE:

Returns the modified list of marks attached to the given event object if
the specified dynamic was initially present in that list and successfully
removed, otherwise returns NIL.

EXAMPLE:

;; Create an event object, add one dynamic mark and one non-dynamic mark, print
;; all marks attached to the object, and remove just the dynamics from that

16 SC/NAMED-OBJECT 287

;3 list of all marks.

(let ((e (make-event ’c4 ’q)))
(add-mark-once e ’ppp)
(add-mark-once e ’pizz)
(print (marks e))
(remove-dynamics e))

=>
(PIZZ PPP)
(P1ZZ)
;; Attempting to remove dynamics when none are present returns NIL.
(let ((e (make-event ’c4 ’q)))
(remove-dynamics e))
=> NIL
SYNOPSIS:

(defmethod remove-dynamics ((e event))

16.2.125 event/replace-mark

[event | [Methods |
ARGUMENTS:
- An event object.
- The mark to be replaced.
- The new mark.

OPTIONAL ARGUMENTS:

- T or NIL to indicate whether the mark to be replaced is in the
MARKS-BEFORE slot. T = it is in the MARKS-BEFORE slot. Default = NIL.

RETURN VALUE:

Returns the new value of the MARKS/MARKS-BEFORE slot of the given object.
EXAMPLE:

;5 Add marks to the MARKS slot and replace ’a with ’batt

(let ((e (make-event ’c4 ’q)))
(loop for m in ’(a s pizz)

16 SC/NAMED-OBJECT 288

do (add-mark e m))
(replace-mark e ’a ’batt))

=> (PIZZ S BATT)

;5 Add marks to the MARKS-BEFORE slot and replace ’arco with ’at
(let ((e (make-event ’c4 ’q)))
(loop for m in ’(arco col-legno)
do (add-mark-before e m))
(replace-mark e ’arco ’at t))

=> (COL-LEGNO AT)

| #
(defmethod replace-mark ((e event) what with &optional before)

16.2.126 event/set-midi-channel

[event | [Methods |
ARGUMENTS:

- An event object.

- A whole number indicating the MIDI-channel to be used for playback of
this event object.

- A whole number indicating the MIDI-channel to be used for playback of the
microtonal pitch material of this event.

RETURN VALUE:

Returns the value of the MIDI-channel setting (a whole number) if the
MIDI-channel slot has been set, otherwise NIL.

EXAMPLE:

;; Unless specified the MIDI channel of a newly created event object defaults
533 to NIL.
(let ((e (make-event ’c4 ’q)))

(midi-channel (pitch-or-chord e)))

=> NIL
(let ((e (make-event ’c4 ’q)))

(set-midi-channel e 7 8)
(midi-channel (pitch-or-chord e)))

16 SC/NAMED-OBJECT 289

=7
SYNOPSIS:

(defmethod set-midi-channel ((e event) midi-channel microtonal-midi-channel)

16.2.127 event/set-midi-time-sig

[event | [Methods |
ARGUMENTS:

- An event object.
- A time-sig object.

RETURN VALUE:
Returns a time-sig object.
EXAMPLE:

;; Creating a new event object sets the midi-time-sig slot to NIL by default
(let ((e (make-event ’c4 ’q)))
(midi-time-sig e))

=> NIL

;; The set-midi-time-sig method returns a time-sig object
(let ((e (make-event ’c4 ’q)))
(set-midi-time-sig e (make-time-sig ’(3 4))))

=>

TIME-SIG: num: 3, denom: 4, duration: 3.0, compound: NIL, midi-clocks: 24,
num-beats: 3

SCLIST: sclist-length: 2, bounds-alert: T, copy: T

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: "0304", tag: NIL,

data: (3 4)

;; Set the midi-time-sig slot and read the data of the given time-sig object
(let ((e (make-event ’c4 ’q)))

(set-midi-time-sig e (make-time-sig ’(3 4)))

(data (midi-time-sig e)))

=> (3 4)

16 SC/NAMED-OBJECT

SYNOPSIS:

(defmethod set-midi-time-sig ((e event) time-sig)

16.2.128 event/set-written

[event | [Methods |
ARGUMENTS:

- An event object.

- A whole number indicating the number of semitones (positive or negative)
by which the sounding pitch is to be tranposed to create the written
pitch.

RETURN VALUE:
A pitch object.
EXAMPLE:

;3 Returns a pitch object (here for example for a B-flat Trumpet or Clarinet)
(let ((e (make-event ’c4 ’q)))
(set-written e -2))

PITCH: frequency: 233.08186975464196, midi-note: 58, midi-channel: NIL
pitch-bend: 0.0
degree: 116, data-consistent: T, white-note: B3
nearest-chromatic: BF3
src: 0.8908987045288086, src-ref-pitch: C4, score-note: BF3
qtr-sharp: NIL, qtr-flat: NIL, gtr-tome: NIL,
micro-tone: NIL,
sharp: NIL, flat: T, natural: NIL,
octave: 3, cbths: 1, no-8ve: BF, no-8ve-no-acc: B
show-accidental: T, white-degree: 27,
accidental: F,
accidental-in-parentheses: NIL, marks: NIL
LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL
NAMED-OBJECT: id: BF3, tag: NIL,
data: BF3

290

;; Create a single-pitch event object, set it’s written pitch to two half-steps

;; lower, and print the corresponding data slots
(let ((e (make-event ’c4 ’q)))

16 SC/NAMED-OBJECT 291

(set-written e -2)
(print (data (pitch-or-chord e)))
(print (data (written-pitch-or-chord e))))

=>

Cc4
BF3

SYNOPSIS:

(defmethod set-written ((e event) transposition)

16.2.129 event/setf amplitude

[event | [Methods |
ARGUMENTS:

- An amplitude value (real number).
- An event object.

RETURN VALUE:
Returns the specified amplitude value.

EXAMPLE:

;; When no amplitude is specified, new event objects are created with a default
;3 amplitude of 0.7.
(let ((e (make-event ’c4 ’q)))

(amplitude e))

=> 0.7

;; Setting an amplitude returns the amplitude set
(let ((e (make-event ’c4 ’q)))
(setf (amplitude e) .3))

=> 0.3

;3 Create an event object, set its amplitude, then print the contents of the
;; amplitude and marks slots to see the dynamic setting.
(let ((e (make-event ’c4 ’q)))

(setf (amplitude e) .3)

(print (amplitude e))

16 SC/NAMED-OBJECT 292

(print (marks e)))

=>
0.3
(

;; Setting an amplitude greater than 1.0 or less than 0.0 sets the amplitude
;; correspondingly and sets the dynamic mark to FFFF or NIENTE respectively.
(let ((el (make-event ’c4 ’q))
(e2 (make-event ’c4 ’q)))

(setf (amplitude el) 1.3)

(setf (amplitude e2) -1.3)

(print (marks el))

(print (marks e2)))

=>

(FFFF)
(NIENTE)

SYNOPSIS:

(defmethod (setf amplitude) :after (value (e event))

16.2.130 event/setf tempo-change

[event | [Methods |
ARGUMENTS:

- An event object.
- A number indicating the new tempo bpm.

RETURN VALUE:
Returns a tempo object.
EXAMPLE:

;; Creation of a new event object sets the tempo-change slot to NIL by default,
;3 unless otherwise specified.
(let ((e (make-event ’c4 ’q)))

(tempo-change e))

=> NIL

16 SC/NAMED-OBJECT 293

;5 The tempo-change method returns a tempo object
(let ((e (make-event ’c4 ’q)))
(setf (tempo-change e) 132))

=>

TEMPO: bpm: 132, beat: 4, beat-value: 4.0, qtr-dur: 0.45454545454545453
qtr-bpm: 132.0, usecs: 454545, description: NIL

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-0BJECT: id: NIL, tag: NIL,

data: 132

;; The new tempo object is stored in the event object’s tempo-change slot.
(let ((e (make-event ’c4 ’q)))

(setf (tempo-change e) 132)

e)

=>

EVENT: start-time: NIL, end-time: NIL,
duration-in-tempo: 0.0,
compound-duration-in-tempo: 0.0,
amplitude: 0.7, score-marks: NIL,
bar-num: -1, cmn-objects-before: NIL,
tempo-change:

TEMPO: bpm: 132, beat: 4, beat-value: 4.0, gtr-dur: 0.45454545454545453
qtr-bpm: 132.0, usecs: 454545, description: NIL

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: NIL, tag: NIL,

data: 132

[...]

SYNOPSIS:

(defmethod (setf tempo-change) (value (e event))

16.2.131 event/sharp-p

[event | [Methods |
ARGUMENTS:

- An event object.
OPTIONAL ARGUMENTS:

- T or NIL to indicate whether the test is to handle the written or
sounding pitch in the event. T = written. Default = NIL.

16 SC/NAMED-OBJECT 294

RETURN VALUE:

Returns T if the note tested has a sharp, otherwise NIL (ie, is natural or
has a flat).

EXAMPLE:

;3 Returns T when the note is sharp
(let ((e (make-event ’cs4 ’q)))
(sharp-p e))
=T
;; Returns NIL when the note is not sharp (ie, is flat or natural)
(let ((e (make-event ’c4 ’q)))
(sharp-p e))
=> NIL

(let ((e (make-event ’df4 ’q)))
(sharp-p e))

=> NIL
SYNOPSIS:

(defmethod sharp-p ((e event) &optional written)

16.2.132 event/sort-event-list

[event | [Functions]

ARGUMENTS:

- A list of event objects.
RETURN VALUE:

A list of event objects.
EXAMPLE:

;; Create a list of event object with non-sequential start-times, sort them,
;; and return the pitches and start times of the newly ordered list.
(let ((e-list (loop repeat 8

16 SC/NAMED-OBJECT 295

for nn in ’(c4 d4 e4 f4 g4 a4 b4 cb)
for st in (1.0 3.0 2.0 5.0 8.0 4.0 7.0 6.0)
collect (make-event nn ’e :start-time st))))
(sort-event-list e-list)
(loop for e in e-list
collect (get-pitch-symbol e)
collect (start-time e)))

=> (C4 1.0 E4 2.0 D4 3.0 A4 4.0 F4 5.0 C5 6.0 B4 7.0 G4 8.0)

SYNOPSIS:

(defun sort-event-list (event-list)

16.2.133 event/transpose

[event | [Methods |
ARGUMENTS:

- An event object.
- A number (can be positive or negative).

OPTIONAL ARGUMENTS:

keyword arguments:

- :destructively. T or NIL to indicate whether the method is to change
(replace) the pitch values of the original event object (T) or return a
new event object with the new pitches (NIL). Default = NIL.

- :chord-function. Default = #’transpose.

- :pitch-function. Default = #’transpose

RETURN VALUE:
An event object.

EXAMPLE:

;; Transpose returns an event object
(let ((e (make-event ’c4 ’q)))
(transpose e 1))

=>
EVENT: start-time: NIL, end-time: NIL,
duration-in-tempo: 0.0,

16 SC/NAMED-OBJECT 296

;; By default transpose returns a modified clone, leaving the original event
;5 object untouched.
(let ((e (make-event ’c4 ’q)))

(print (data (pitch-or-chord (transpose e 1))))

(print (data (pitch-or-chord e))))

Cs4
Cc4

;5 When the keyword argument :destructively is set to T, the data of the
;; original event object is replaced
(let ((e (make-event ’c4 ’q)))

(transpose e 1 :destructively t)

(data (pitch-or-chord e)))

=> CS4

;3 Can transpose by 0 as well (effectively no transposition)
(let ((e (make-event ’c4 ’q)))

(transpose e O :destructively t)

(data (pitch-or-chord e)))

=> C4

;5 ...0r by negative intervals

(let ((e (make-event ’c4 ’q)))
(transpose e -3 :destructively t)
(data (pitch-or-chord e)))

=> A3
;3 Can transpose chords too
(let ((e (make-event ’(c4 ed g4) ’q)))
(transpose e -3 :destructively t)
(loop for p in (data (pitch-or-chord e)) collect (data p)))
=> (A3 CS4 E4)
SYNOPSIS:
(defmethod transpose ((e event) semitones

&key
destructively

16 SC/NAMED-OBJECT 297

;; the default functions are the class methods for pitch
;3 or chord.

(chord-function #’transpose)

(pitch-function #’transpose))

16.2.134 event/wrap-events-list

[event | [Functions]

ARGUMENTS:

- A flat list of event objects.
- An integer that is the number of the event object with which to start
(nth position), or a decimal time in seconds.

OPTIONAL ARGUMENTS:

keyword argument:

- :time. T or NIL to indicate whether the second argument is a time in
seconds or an nth index. If a time in seconds, the method skips to the
closest event object in the list. T = time in seconds. Default = NIL.

RETURN VALUE:
Returns a flat list of event objects with adjust start-times.

EXAMPLE:

;;; Create a list of events of eighth-note durations, specifying start-times at
;55 0.5-second intervals and print the pitches and start-times. Then apply the
;;; function and print the pitches and start-times again to see the change.
(let ((e-list (loop for st from 1.0 by 0.5
for nn in ’(c4 d4 e4 f4 g4 a4 b4 cb)
collect (make-event nn ’e :start-time st))))
(print
(loop for e in e-list
collect (get-pitch-symbol e)
collect (start-time e)))
(wrap-events-list e-list 3)
(print
(loop for e in e-list
collect (get-pitch-symbol e)
collect (start-time e))))

16 SC/NAMED-OBJECT

(C4 1.0 D4 1.5 E4 2.0 F4 2.5 G4 3.0 A4 3.5 B4 4.0 C5 4.5)
(C4 3.5D4 4.0 E4 4.5 F4 1.0 G4 1.5 A4 2.0 B4 2.5 C5 3.0)
SYNOPSIS:

(defun wrap-events-list (events start-at &key (time nil))

16.2.135 rhythm/force-rest

[rhythm] [Methods |
ARGUMENTS:

- A rhythm object.
RETURN VALUE:
A rhythm object.
EXAMPLE:
(let ((r (make-rhythm 8)))
(force-rest r)
(is-rest r))
=T
SYNOPSIS:

(defmethod force-rest ((r rhythm))

16.2.136 rhythm/has-mark

[rhythm | [Methods |
ARGUMENTS:

- A rhythm object.
- A mark.

RETURN VALUE:

If the specified mark is indeed found in the MARKS slot of the given rhythm
object, the tail of the list of marks contained in that slot is returned;

otherwise NIL is returned.

298

16 SC/NAMED-OBJECT 299

EXAMPLE:
;; Add a specific mark and check to see if the rhythm object has it.
(let ((r (make-rhythm ’q)))
(add-mark r ’a)
(has-mark r ’a))
=> (A)
;; Check to see if the given rhythm object possess a mark we know it doesn’t.
(let ((r (make-rhythm ’q)))
(add-mark r ’a)
(has-mark r ’s))
=> NIL
SYNOPSIS:

(defmethod has-mark ((r rhythm) mark &optional (test #’equal))
y P q

16.2.137 rhythm/is-multiple

[rhythm | [Methods |
ARGUMENTS:

- A first rhythm object.
- A second rhythm object.

RETURN VALUE:
Returns T if true and NIL if not. Always also returns the quotient.
EXAMPLE:
(let ((r1 (make-rhythm ’q))
(r2 (make-rhythm ’e)))
(is-multiple ril r2))
=> T, 2.0
(let ((r1 (make-rhythm ’q))
(r2 (make-rhythm ’e.)))

(is-multiple ril r2))

=> NIL, 1.3333333333333333

16 SC/NAMED-OBJECT

SYNOPSIS:

(defmethod is-multiple ((rl rhythm) (r2 rhythm))

16.2.138 rhythm/make-rhythm

[rhythm] [Functions]
ARGUMENTS:

- A duration either as a numeric representation of a rhythm (subdivision of
a whole note; 2 = half note, 4 = quarter, 8 = eighth etc), a quoted
alphabetic shorthand for a duration (ie, ’h, ’q, ’e etc.), or an absolute
duration in seconds.

OPTIONAL ARGUMENTS:

keyword arguments:

- :is-rest. T or NIL to denote whether the given duration is a rest or
not. T = rest. Default = NIL.

- :is-tied-to. T or NIL to denote whether the given duration is tied later
to the next duration in a given rthm-seq-bar/rthm-seq object. T =
tied. Default = NIL.

- :duration. Indicates whether the duration argument has been given as a
duration in seconds, not a known rhythm like ’e or 8. T indicates that
the duration is a duration in seconds. Default = NIL.

- :tempo. Indicates the tempo for the given rhythm. This is not related to
any tempi applied, rather one that is reflected in the duration-in-tempo
slot of event.

RETURN VALUE:
A rhythm object.
EXAMPLE:

(make-rhythm 16)

=>

RHYTHM: value: 16.0, duration: 0.25, rq: 1/4, is-rest: NIL, score-rthm: 16.0,
undotted-value: 16, num-flags: 2, num-dots: 0, is-tied-to: NIL,
is-tied-from: NIL, compound-duration: 0.25, is-grace-note: NIL,
needs-new-note: T, beam: NIL, bracket: NIL, rqgq-note: NIL,
rqgq-info: NIL, marks: NIL, marks-in-part: NIL, letter-value: 16,
tuplet-scaler: 1, grace-note-duration: 0.05

300

16 SC/NAMED-OBJECT

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL
NAMED-OBJECT: id: 16, tag: NIL,
data: 16

(make-rhythm 16 :is-rest t :is-tied-to t)

=>

RHYTHM: value: 16.0, duration: 0.25, rq: 1/4, is-rest: T, score-rthm: 16.0,
undotted-value: 16, num-flags: 2, num-dots: O, is-tied-to: T,
is-tied-from: NIL, compound-duration: 0.25, is-grace-note: NIL,
needs-new-note: NIL, beam: NIL, bracket: NIL, rqgq-note: NIL,
rqq-info: NIL, marks: NIL, marks-in-part: NIL, letter-value: 16,
tuplet-scaler: 1, grace-note-duration: 0.05

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: 16, tag: NIL,

data: 16

(make-rhythm .23 :duration t)

=>

RHYTHM: value: 17.391304, duration: 0.23, rq: 23/100, is-rest: NIL, score-rthm:

undotted-value: -1.0, num-flags: O, num-dots: O, is-tied-to: NIL,
is-tied-from: NIL, compound-duration: 0.23, is—grace-note: NIL,
needs-new-note: T, beam: NIL, bracket: NIL, rqgq-note: NIL,
rqq-info: NIL, marks: NIL, marks-in-part: NIL, letter-value: -1,
tuplet-scaler: 1, grace-note-duration: 0.05

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: NIL, tag: NIL,

data: NIL

SYNOPSIS:

(defun make-rhythm (rthm &key (is-rest nil) (is-tied-to nil) (duration nil)
(tempo 60.0))

16.2.139 rhythm/replace-mark

[rhythm] [Methods |
ARGUMENTS:
- A rhythm object.

- The mark to be replaced.
- The new mark.

RETURN VALUE:

301

NIL,

16 SC/NAMED-OBJECT 302

Returns the new value of the MARKS slot of the given object.
EXAMPLE:

;; Make a rhythm object, add the mark ’a, then replace ’a with ’s
(let ((r (make-rhythm ’q)))

(add-mark r ’a)

(replace-mark r ’a ’s))

=> (8)

;; Make a rhythm object, add a list of marks, replace just the ’pizz mark with
;3 a ’batt mark

(let ((r (make-rhythm ’q)))
(loop for m in ’(a s pizz col-legno) do (add-mark-once r m))
(replace-mark r ’pizz ’batt))

=> (COL-LEGNO BATT S A)

SYNOPSIS:

(defmethod replace-mark ((r rhythm) what with &optional ignore)

16.2.140 rhythm /rhythm-equal

[rhythm] [Methods |
ARGUMENTS:

- A first rhythm object.
- A second rhythm object.

RETURN VALUE:
T if the values of the given rhythm objects are equal, else NIL.
EXAMPLE:
(let ((r1 (make-rhythm 4))
(r2 (make-rhythm 4)))

(rhythm-equal rl r2))

=> T

16 SC/NAMED-OBJECT

(let ((r1 (make-rhythm 4))
(r2 (make-rhythm 8)))
(rhythm-equal r1 r2))
=> NIL
(let ((r1 (make-rhythm 4 :is-rest T))
(r2 (make-rhythm 4 :is-rest NIL)))
(rhythm-equal rl r2))
=> T
(let ((r1 (make-rhythm 4 :is-tied-to T))
(r2 (make-rhythm 4 :is-tied-to NIL)))
(rhythm-equal rl r2))
=T
SYNOPSIS:

(defmethod rhythm-equal ((rl rhythm) (r2 rhythm))

16.2.141 rhythm /rhythm-list

[rhythm | [Functions |
ARGUMENTS:

- The list of rhythm symbols.
OPTIONAL ARGUMENTS:

- T or NIL indicates whether to create a circular-sclist from the
result. If NIL, a simple list will be returned (default = NIL).

RETURN VALUE:
A list or circular-sclist of the rhythm objects.
EXAMPLE:

;; Create a list of rhythm objects
(rhythm-list ’(q w+te q. h.+s e.+ts))

=>(

303

16 SC/NAMED-OBJECT 304

RHYTHM: value: 4.0f0, duration: 1.0

[...]

RHYTHM: value: 1.0f0, duration: 4.0

[...]

RHYTHM: value: 8.0f0, duration: 0.5

[...]

RHYTHM: value: 2.6666666666666665, duration: 1.5
[...]

RHYTHM: value: 1.3333333333333333, duration: 3.0
[...]

RHYTHM: value: 16.0f0, duration: 0.25

[...]

RHYTHM: value: 5.333333333333333, duration: 0.75
[...]

RHYTHM: value: 24.0f0, duration: 0.16666666666666666
)

;; Collect the data from each of the individual rhythm objects in the list.
(let ((rl (rhythm-list ’(q w+e q. h.+s e.+ts))))
(print (loop for r in rl collect (data r))))

=> (Q llwll IIEII Q. IIH.II IISII IIE'II IITSII)

;; Set the optional argument to T to create a circular-sclist instead
(rhythm-list ’(q w+te q. h.+s e.+ts) t)

=>

CIRCULAR-SCLIST: current O

SCLIST: sclist-length: 8, bounds-alert: T, copy: T
LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL
NAMED-OBJECT: id: NIL, tag: NIL,

data: (

[...]

)

;; Create a circular-sclist and check that it’s a circular-sclist using cscl-p
(let ((rl (rhythm-list ’(q w+te q. h.+s e.+ts) t)))
(cscl-p rl))
=T
SYNOPSIS:

(defun rhythm-list (rthms &optional circular)

16 SC/NAMED-OBJECT 305

16.2.142 rhythm/rhythm/

[rhythm] [Methods |
ARGUMENTS:

- A rhythm object.
- A second rhythm object.

RETURN VALUE:
A number.
EXAMPLE:
(let ((r1 (make-rhythm ’q))
(r2 (make-rhythm ’e)))
(rhythm/ r1 r2))
=> 2.0
(let ((r1 (make-rhythm ’q))
(r3 (make-rhythm ’s.)))
(rhythm/ r1 r3))
=> 2.6666667

SYNOPSIS:

(defmethod rhythm/ ((rl rhythm) (r2 rhythm))

16.2.143 rhythm/rm-marks

[rhythm] [Methods |
ARGUMENTS:

- A rhythm object.
- A mark or list of marks.

OPTIONAL ARGUMENTS:

- T or NIL to indicate whether a warning is to be printed if the specified
mark is not present in the given rhythm object’s MARKS slot.

RETURN VALUE:

16 SC/NAMED-OBJECT

Always returns NIL.
EXAMPLE:

;3 The method itself returns NIL
(let ((r (make-rhythm ’q)))
(add-mark-once r ’a)
(rm-marks r ’a))

=> NIL

;; Adding a list of marks to r, then removing only ’s
(let ((r (make-rhythm ’q)))
(loop for m in ’(a s pizz col-legno x-head) do
(add-mark-once r m))
(rm-marks r ’s)
(marks r))

=> (X-HEAD COL-LEGNO PIZZ A)

;; Removing a list of marks from r
(let ((r (make-rhythm ’q)))
(loop for m in ’(a s pizz col-legno x-head) do
(add-mark-once r m))
(rm-marks r ’(s a))
(marks r))

=> (X-HEAD COL-LEGNO PIZZ)

;; Attempting to remove a mark that isn’t present results in a warning
;3 being printed by default
(let ((r (make-rhythm ’q)))
(loop for m in ’(a s pizz col-legno x-head) do
(add-mark-once r m))
(rm-marks r ’zippy))

=> NIL
WARNING: rhythm::rm-marks: no mark ZIPPY in (X-HEAD COL-LEGNO PIZZ S A)

;; Suppress printing the warning when the specified mark isn’t present
(let ((r (make-rhythm ’q)))
(loop for m in ’(a s pizz col-legno x-head) do
(add-mark-once r m))
(rm-marks r ’zippy nil))

=> NIL

306

16 SC/NAMED-OBJECT

SYNOPSIS:

(defmethod rm-marks ((r rhythm) marks &optional (warn t))

16.2.144 rhythm/scale

[rhythm] [Methods |
ARGUMENTS:

- A rhythm object.
- A scaling factor.

OPTIONAL ARGUMENTS:

- <clone>. This argument determines whether a new rhythm object is made or
the duration value of the old object is replaced. When set to T, a new
object is made based on the duration value of the original. When set to
NIL, the original duration value is replaced (see example). Default = T.

RETURN VALUE:
A rhythm object.
EXAMPLE:

(let ((r (make-rhythm 4)))
(data (scale r 2)))

=> H

(let ((r (make-rhythm 4)))
(data (scale r 3)))

=> H.

(let ((r (make-rhythm 4)))
(data (scale r .5)))

=> E
(let ((r (make-rhythm 4)))

(dotimes (i 5)
(print (value (scale r .5)))))

307

16 SC/NAMED-OBJECT 308

0 00 00 0 I
O O O O O

(let ((r (make-rhythm 4)))
(dotimes (i 5)
(print (value (scale r .5 nil)))))
=>
8.0
16.0
32.0

64.0
128.0

SYNOPSIS:

(defmethod scale ((r rhythm) scaler &optional (clone t) ignorel ignore2)

16.2.145 rhythm/subtract

[rhythm] [Methods |
ARGUMENTS:

- A first rhythm object.
- A second rhythm object.

OPTIONAL ARGUMENTS:

- T or NIL to indicate whether a warning is to be printed when the
resulting duration is less than or equal to 0. Default = O.

RETURN VALUE:

A rhythm object if the resulting duration is greater than 0, else NIL and
the optional warning.

EXAMPLE:

;; Make a new rhythm object with a duration equal to one quarter minus one
;5 eighth.

16 SC/NAMED-OBJECT 309

(let ((r1 (make-rhythm ’q))
(r2 (make-rhythm ’e)))
(subtract ril r2))

=>

RHYTHM: value: 8.0f0, duration: 0.5, rq: 1/2, is-rest: NIL, score-rthm: 8.0fO0,
undotted-value: 8, num-flags: 1, num-dots: 0, is-tied-to: NIL,
is-tied-from: NIL, compound-duration: 0.5, is-grace-note: NIL,
needs-new-note: T, beam: NIL, bracket: NIL, rqg-note: NIL,
rqq-info: NIL, marks: NIL, marks-in-part: NIL, letter-value: 8,
tuplet-scaler: 1, grace-note-duration: 0.05

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: E, tag: NIL,

data: E

;5 A half minus a dotted eighth is represented as a triplet half
(let ((r1 (make-rhythm °’h))
(r2 (make-rhythm ’e.)))
(data (subtract rl r2)))

= TQ...

;5 If the resulting duration is O or less, return NIL, with no warning by
;5 default
(let ((r1 (make-rhythm ’e))
(r2 (make-rhythm ’q)))
(subtract r1 r2))

=> NIL

;53 Setting the optional argument to t returns a warning when the resulting
;; duration is less than O
(let ((r1 (make-rhythm ’e))
(r2 (make-rhythm ’q)))
(subtract rl r2 t))

=> NIL
WARNING: rhythm::arithmetic: new duration is -0.5; can’t create rhythm

;; Subtracting a septuplet-16th from a quarter results in a duration that
;; cannot be represented as a single rhythm, therefore setting the DATA to NIL
;; while VALUE and DURATION are still set.
(let ((r1 (make-rhythm 4))
(r2 (make-rhythm 28)))
(print (value (subtract rl r2)))
(print (duration (subtract rl r2)))

16 SC/NAMED-OBJECT 310

(print (data (subtract rl r2))))
=>
4.666666666666666

0.8571428571428572
NIL

SYNOPSIS:

(defmethod subtract ((rl rhythm) (r2 rhythm) &optional warn)

16.2.146 linked-named-object/sclist

[linked-named-object | [Classes]
NAME:

player
File: sclist.1lsp

Class Hierarchy: named-object -> linked-named-object -> sclist

Version: 1.0.0-beta2
Project: slippery chicken (algorithmic composition)
Purpose: Implementation of a simple but self-checking (hence

sclist) list class.
Author: Michael Edwards: m@michael-edwards.org
Creation date: February 11th 2001
$$ Last modified: 21:26:09 Mon May 14 2012 BST

SVN ID: $Id: sclist.lsp 1982 2012-05-24 15:35:54Z medward2 $

16.2.147 sclist/change-data

[sclist | [Classes |
NAME:

change-data

16 SC/NAMED-OBJECT

File:

change-data.lsp

Class Hierarchy: named-object -> linked-named-object -> sclist ->

Version:
Project:

Purpose:

Author:

Creation date:

change-data
1.0.0-beta2
slippery chicken (algorithmic composition)

Implementation of the change-data class. Holds data
regarding parameter changes for a whole section

(e.g. tempo). For use in change-map. The data in the
<changes> slot is a three-element list: the sequence
number, the bar number of the sequence where the change
takes place (defaults to 1) and the new data (e.g. a
tempo value).

When giving this data, the sequence number and bar
numbers are always integers > 0, unlike sequences
themselves which may be given any kind of id. Therefore
it’s OK to sort the given data according to integer
precedence and perform numeric tests on them too.

No public interface envisaged (so no robodoc entries).

Michael Edwards: m@michael-edwards.org

2nd April 2001

$$ Last modified: 20:31:51 Mon May 14 2012 BST

SVN ID: $Id: change-data.lsp 1982 2012-05-24 15:35:54Z medward2 $

16.2.148 change-data/get-change-data

[change-data | [Methods]

ARGUMENTS:
OPSIS:

OPTIONAL ARGUMENTS: RETURN VALUE: EXAMPLE:

(defmethod get-change-data ((cd change-data) sequence &optional (bar 1))

311

SYN-

16 SC/NAMED-OBJECT 312

16.2.149 change-data/make-change-data

[change-data | [Functions |
ARGUMENTS:

- An ID for the change-data object to be created.

- A list of three-item lists, each consisting of the number of the sequence
in which the data is to change, the number of the bar within that
sequence in which the data is to change, and the data value itself. The
sequence number and bar number are always integers > 0. If no bar-number
is given, it will default to 1.

RETURN VALUE:
A change-data object.
EXAMPLE:

(make-change-data ’cd-test ’((1 1 23) (6 1 28) (18 1 35)))
=>
CHANGE-DATA:

previous-data: NIL,

last-data: 35
SCLIST: sclist-length: 3, bounds-alert: T, copy: T
LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

NAMED-OBJECT: id: CD-TEST, tag: NIL,
data: ((1 1 23) (6 1 28) (18 1 35))

SYNOPSIS:

(defun make-change-data (id data)

16.2.150 sclist/chord

[sclist | [Classes]
NAME:

chord
File: chord.lsp

Class Hierarchy: mnamed-object -> linked-named-object -> sclist -> chord

16 SC/NAMED-OBJECT 313

Version: 1.0.0-beta2
Project: slippery chicken (algorithmic composition)
Purpose: Implementation of the chord class that is simply an

sclist whose data is a list of pitch instances.
Author: Michael Edwards: m@michael-edwards.org
Creation date: July 28th 2001
$$ Last modified: 15:27:05 Mon May 14 2012 BST

SVN ID: $Id: chord.lsp 1982 2012-05-24 15:35:54Z medward2 $

16.2.151 chord/add-mark

[chord] [Methods |
ARGUMENTS:

- A chord object.
- A mark.

OPTIONAL ARGUMENTS:

- T or NIL to indicate whether to print a warning when attempting to add a
mark to a rest.

RETURN VALUE:
Returns the full contents of the MARKS slot of the given chord object
EXAMPLE:
;55 Returns the complete contents of the MARKS slot
(let ((chrd (make-chord ’(cs4 e4 fs4 af4d bf4))))
(add-mark chrd ’fff)
(add-mark chrd ’pizz))
=> (PIZZ FFF)

SYNOPSIS:

(defmethod add-mark ((c chord) mark &optional warn-rest)

16 SC/NAMED-OBJECT 314

16.2.152 chord/chord-equal

[chord] [Methods |
ARGUMENTS:

- A first chord object.
- A second chord object.

RETURN VALUE:
T or NIL. T if the pitch content of the chords is equal, otherwise NIL.
EXAMPLE:

;5 Two chords are equal

(let ((chrdl (make-chord ’(c4 e4 ggs4 bqf4 d5 £5)
:midi-channel 11
:microtones-midi-channel 12))

(chrd2 (make-chord ’(c4 e4 gqs4 bgf4 d5 £5)
:midi-channel 11
:microtones-midi-channel 12)))
(chord-equal chrdl chrd2))

=> T

;; Chord objects with the same pitch objects in a different order are unequal

(let ((chrdl (make-chord ’(c4 e4 ggs4 bqf4 d5 £5)
:midi-channel 11
:microtones-midi-channel 12))

(chrd2 (make-chord ’(e4 c4 ggs4 bqf4 45 £5)
:midi-channel 11
:microtones-midi-channel 12
rauto-sort nil)))
(chord-equal chrdl chrd2))

=> NIL

;; Only the pitch content is compared. Content of other slots is irrelevant.

(let ((chrdl (make-chord ’(e4 c4 ggs4 bqf4 d5 £5)
:midi-channel 11
:microtones-midi-channel 12))

(chrd2 (make-chord ’(e4 c4 ggs4 bqf4 d5 £5)
:midi-channel 7
:microtones-midi-channel 8)))
(chord-equal chrdl chrd2))

16 SC/NAMED-OBJECT

=T
SYNOPSIS:

(defmethod chord-equal ((cl chord) (c2 chord))

16.2.153 chord/chord-member

[chord] [Methods |
ARGUMENTS:

- A chord object.

- A pitch object. This must be a pitch object, not just a note-name symbol,
but the pitch object can be made with either a note-name symbol or a
numerical hertz frequency value.

OPTIONAL ARGUMENTS:

- T or NIL to indicate whether or not the function should consider
enharmonically equivalent pitches to be equal. T = enharmonics are
equal. Default = T.

RETURN VALUE:

Similar to Lisp’s "member" function, this method returns the tail of the
data (list of pitch objects) of the tested chord object starting with the
specified pitch object if that pitch is indeed a member of that list,
otherwise returns NIL.

NB: Since the method returns the tail of the given chord (the "rest" of the

pitches after the given pitch), the result may be different depending
on whether that chord has been auto-sorted or not.

EXAMPLE:

;; Returns the tail of pitch objects contained starting with the tested pitch

(let ((chrd (make-chord ’(c4 e4 ggs4 a4 d5 f5 bqf5)
:midi-channel 11
:microtones-midi-channel 12)))

(pitch-list-to-symbols (chord-member chrd (make-pitch ’a4))))

=> (A4 D5 F5 BQF5)

315

16 SC/NAMED-OBJECT 316

;5 The chord object’s default auto-sort feature might appear to affect outcome
(let ((chrd (make-chord ’(d5 c4 gqs4 a4 bqf5 f5 e4)
:midi-channel 11
:microtones-midi-channel 12)))
(pitch-list-to-symbols (chord-member chrd (make-pitch ’a4))))

=> (A4 D5 F5 BQF5)

;; Returns NIL if the pitch is not present in the tested chord object. This
;; example uses the "pitch-list-to-symbols" function to simplify the
;; pitch-object output.
(let ((chrd (make-chord ’(d5 c4 gqs4 a4 bqf5 f5 e4)
:midi-channel 11
:microtones-midi-channel 12)))
(pitch-list-to-symbols (chord-member chrd (make-pitch ’b4))))

=> NIL
;5 The optional <enmharmonics-are-equal> argument is set to NIL by default
(let ((chrd (make-chord ’(c4 e4 a4 d5 £5))))
(pitch-list-to-symbols (chord-member chrd (make-pitch ’ds4))))
=> NIL
;; Setting the optional <enharmonics-are-equal> argument to T
(let ((chrd (make-chord ’(c4 ef4 a4 d5 £5))))
(pitch-list-to-symbols (chord-member chrd (make-pitch ’ds4) t)))
=> (EF4 A4 D5 F5)

;3 The optional <octaves-are-true> argument is NIL by default

(let ((chrd (make-chord ’(c4 ef4 a4 d5 ef5 £5))))
(pitch-list-to-symbols (chord-member chrd (make-pitch ’c5))))

=> NIL
;; If optional <octaves-are-true> argument is set to T, any occurence of the
;; same pitch class in a different octave will be considered part of the chord
;; and return a positive result.
(let ((chrd (make-chord ’(c4 ef4 a4 d5 ef5 £5))))

(pitch-list-to-symbols (chord-member chrd (make-pitch ’c5) nil t)))
=> (C4 EF4 A4 D5 EF5 F5)

SYNOPSIS:

16 SC/NAMED-OBJECT

(defmethod chord-member ((c chord) (p pitch)
&optional (enharmonics-are-equal t)
(octaves-are-true nil))

16.2.154 chord/common-notes

[chord] [Methods |
ARGUMENTS:

- A first chord object.
- A second chord object.

OPTIONAL ARGUMENTS:

- T or NIL to indicate whether enharmonically equivalent pitches are to be
considered the same pitch. T = enharmonically equivalent pitches are
considered the same pitch. Default = T.

- T or NIL to indicate whether the same pitch class in different octaves is
to be considered the same pitch. T = consider the same pitch class from
octaves to be the same pitch. Default = NIL.

RETURN VALUE:

Returns an integer that is the number of pitches common to the two chords
objects.

EXAMPLE:

;3 The following two chord objects have 3 pitches in common
(let ((chrd-1 (make-chord ’(c4 e4 g4 b4 d5 £5)))
(chrd-2 (make-chord ’(d3 £3 a3 c4 e4 g4))))
(common-notes chrd-1 chrd-2))

=> 3

;; By default, enharmonically equivalent pitches are considered to be the same

;5 pitch
(let ((chrd-1 (make-chord ’(c4 e4 g4 b4 d5 £5)))
(chrd-2 (make-chord ’(d3 £3 a3 c4 ff4 g4))))
(common-notes chrd-1 chrd-2))

=> 3

;; Setting the first optional argument to NIL causes enharmonically equivalent

317

16 SC/NAMED-OBJECT 318

;; pitches to be considered separate pitches
(let ((chrd-1 (make-chord ’(c4 e4 g4 b4 d5 £5)))
(chrd-2 (make-chord ’(d3 £3 a3 c4 ff4 g4))))
(common-notes chrd-1 chrd-2 nil))

=> 2

;5 By default, the same pitch class in different octaves is considered to be a
;3 separate pitch

(let ((chrd-1 (make-chord ’(c4 e4 g4 b4 d5 £5)))

(chrd-2 (make-chord ’(d3 £3 a3 ff4 g4 c5))))
(common-notes chrd-1 chrd-2 t))

;; Setting the second optional argument to T causes all pitches of the same
;; pitch class to be considered equal regardless of their octave
(let ((chrd-1 (make-chord ’(c4 e4 g4 b4 d5 £5)))
(chrd-2 (make-chord ’(d3 £3 a3 ff4 g4 c5))))

(common-notes chrd-1 chrd-2 t t))
=> 5
SYNOPSIS:
(defmethod common-notes ((cl chord) (c2 chord)

&optional (enharmonics-are-equal t)
(octaves-are-true nil))

16.2.155 chord/delete-marks

[chord | [Methods |
ARGUMENTS:

- A chord object.
RETURN VALUE:
Returns NIL.
EXAMPLE:

;53 Make a chord object, add two marks, and print the MARKS slot to see them;
;33 apply delete-marks and print the MARKS slot again to see the change

16 SC/NAMED-OBJECT 319

(let ((chrd (make-chord ’(cs4 e4 fs4 afd bf4))))
(add-mark chrd ’fff)
(add-mark chrd ’pizz)
(print (marks chrd))
(delete-marks chrd)
(print (marks chrd)))
=>
(PIZZ FFF)
NIL
SYNOPSIS:

(defmethod delete-marks ((c chord))

16.2.156 chord/get-midi-channel

[chord | [Methods]
ARGUMENTS:

- A chord object.

RETURN VALUE:

An integer.

EXAMPLE:

(let ((chrd (make-chord ’(c4 e4 gqs4 bqf4 d5 £5)
:midi-channel 11
:microtones-midi-channel 12)))

(get-midi-channel chrd))

=> 11

SYNOPSIS:

(defmethod get-midi-channel ((c chord))

16.2.157 chord/get-pitch

[chord] [Methods |
ARGUMENTS:

16 SC/NAMED-OBJECT

- A chord object.

- An integer that is the index of the pitch object sought within the data

list of the given chord object.

RETURN VALUE:

A pitch object.

EXAMPLE:

(let ((chrd (make-chord °’(c4 e4 gqs4 bqf4 d5 £5)

:midi-channel 11
:microtones-midi-channel 12)))

(get-pitch chrd 3))

PITCH:

frequency: 403.482, midi-note: 67, midi-channel: 12
pitch-bend: 0.5

degree: 135, data-consistent: T, white-note: G4
nearest-chromatic: G4

src: 1.5422108173370361, src-ref-pitch: C4, score-note: GS4
qtr-sharp: 1, qtr-flat: NIL, qtr-tome: 1,
micro-tone: T,

sharp: NIL, flat: NIL, natural: NIL,

octave: 4, cbths: 0, no-8ve: GQS, no-8ve-no-acc: G
show-accidental: T, white-degree: 32,

accidental: QS,

accidental-in-parentheses: NIL, marks: NIL

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL
NAMED-OBJECT: id: GQS4, tag: NIL,
data: GQS4

SYNOPSIS:

(defmethod get-pitch ((c chord) ref)

16.2.158 chord/get-pitch-symbols

[chord] [Methods |
ARGUMENTS:

- A chord object.

RETURN VALUE:

320

16 SC/NAMED-OBJECT

A list of note-name symbols.

EXAMPLE:

(let ((chrd (make-chord ’(c4 e4 gqs4 bqf4 d5 £5)
:midi-channel 11
:microtones-midi-channel 12)))

(get-pitch-symbols chrd))
=> (C4 E4 GQS4 BQF4 D5 Fb)

SYNOPSIS:

(defmethod get-pitch-symbols ((c chord))

16.2.159 chord/has-notes

[chord] [Methods |
DATE:

16-Aug-2010
DESCRIPTION

Tests whether a given chord object contains at least one pitch
object.

(make-chord nil) is a valid function call and creates a chord object with

no notes.

ARGUMENTS:

- A chord object.

RETURN VALUE:

Returns T if the given chord object contains at least one pitch object,

otherwise returns NIL.

EXAMPLE:

;; Returns T if the given chord object contains at least one pitch object

(let ((chrd (make-chord ’(c4))))
(has-notes chrd))

321

16 SC/NAMED-OBJECT 322

=T

(let ((chrd (make-chord ’(c4 e4 g4))))
(has-notes chrd))

=> T
;; Otherwise returns NIL
(let ((chrd (make-chord nil)))

(has-notes chrd))

=> NIL
SYNOPSIS:

(defmethod has-notes ((c chord))

16.2.160 chord/highest

[chord | [Methods]
ARGUMENTS:

- A chord object.
RETURN VALUE:
A pitch object
EXAMPLE:

;; Returns the last pitch object of a chord object
(let ((chrd (make-chord ’(e4 c4 gqs4 bqf4 d5 £5)
:midi-channel 11
:microtones-midi-channel 12)))
(highest chrd))

=>

PITCH: frequency: 698.456, midi-note: 77, midi-channel: 11
pitch-bend: 0.0
degree: 154, data-consistent: T, white-note: F5
nearest—-chromatic: F5
src: 2.669679641723633, src-ref-pitch: C4, score-note: F5
qtr-sharp: NIL, qtr-flat: NIL, qtr-tome: NIL,

16 SC/NAMED-OBJECT 323

micro-tone: NIL,

sharp: NIL, flat: NIL, natural: T,

octave: 5, cbths: 0, no-8ve: F, no-8ve-no-acc: F

show-accidental: T, white-degree: 38,

accidental: N,

accidental-in-parentheses: NIL, marks: NIL
LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL
NAMED-OBJECT: id: F5, tag: NIL,
data: F5

;5 Is not capable of returning the highest pitch object from chord objects that
;3 have not been auto-sorted
(let ((chrd (make-chord ’(e4 c4 gqs4 bqf4 f5 d5)
:midi-channel 11
:microtones-midi-channel 12
rauto-sort nil)))
(data (highest chrd)))

=> D5
SYNOPSIS:

(defmethod highest ((c chord))

16.2.161 chord/lowest

[chord | [Methods |
ARGUMENTS:

- A chord object.
RETURN VALUE:
A pitch object.
EXAMPLE:

;5 Returns the pitch object of the lowest pitch despite not being sorted
(let ((chrd (make-chord ’(e4 c4 gqs4 bqf4 d5 £5)
:midi-channel 11
:microtones-midi-channel 12
rauto-sort nil)))
(lowest chrd))

16 SC/NAMED-OBJECT 324

PITCH:

frequency: 261.626, midi-note: 60, midi-channel: 11
pitch-bend: 0.0

degree: 120, data-consistent: T, white-note: C4
nearest—-chromatic: C4

src: 1.0, src-ref-pitch: C4, score-note: C4
qtr-sharp: NIL, qtr-flat: NIL, qtr-tome: NIL,
micro-tone: NIL,

sharp: NIL, flat: NIL, natural: T,

octave: 4, cbths: 0, no-8ve: C, no-8ve-no-acc: C
show-accidental: T, white-degree: 28,
accidental: N,

accidental-in-parentheses: NIL, marks: NIL

LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL
NAMED-OBJECT: id: C4, tag: NIL,
data: C4

SYNOPSIS:

(defmethod lowest ((c chord))

16.2.162 chord/make-chord

[chord | [Functions |
ARGUMENTS:

- A list of note-name symbols.

OPTIONAL ARGUMENTS:

keyword arguments:

- :id. An element of any type that is to be the ID of the chord object
created.

- :auto-sort. T or NIL to indicate whether the method should first sort the
individual pitch objects created from low to high before returning the
new chord object. T = sort. Default = T.

- :midi-channel. An integer that is to be the MIDI channel value to which
all of the chromatic pitch objects in the given chord object are to be
set for playback. Default = O.

- :microtones-midi-channel. An integer that is to be the MIDI channel value

to which all of the microtonal pitch objects in the given chord object
are to be set for playback. Default = O.

- :force-midi-channel. T or NIL to indicate whether to force a given value
to the MIDI-CHANNEL slot, even if the notes passed to the method are
already pitch objects with non-zero MIDI-CHANNEL values.

16 SC/NAMED-OBJECT 325

RETURN VALUE:
A chord object.
EXAMPLE:

;; Simple useage with default values for keyword arguments
(make-chord ’(c4 e4 g4 b4 d5 £5))

=>

CHORD: auto-sort: T, marks: NIL, micro-tone: NIL

SCLIST: sclist-length: 6, bounds-alert: T, copy: T
LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL
NAMED-OBJECT: id: NIL, tag: NIL,

data: (

PITCH: frequency: 261.626, midi-note: 60, midi-channel: O
[...]

data: C4

PITCH: frequency: 329.628, midi-note: 64, midi-channel: 0O
[...]

data: E4

[...]

PITCH: frequency: 391.995, midi-note: 67, midi-channel: 0
[...]

data: G4

[...]

PITCH: frequency: 493.883, midi-note: 71, midi-channel: O
[...]

data: B4

[...]

PITCH: frequency: 587.330, midi-note: 74, midi-channel: 0O
[...]

data: D5

[...]

PITCH: frequency: 698.456, midi-note: 77, midi-channel: 0O
[...]

data: F5

)

;; By default the pitches are first sorted low to high
(let ((mc (make-chord ’(e4 c4 g4 b4 £5 d5))))

(loop for p in (data mc) collect (data p)))
=> (C4 E4 G4 B4 D5 Fb)

;; Setting the :midi-channel and :microtones-midi-channel arguments results in

16 SC/NAMED-OBJECT 326

;; the MIDI-CHANNEL slot of each of the contained pitch objects being set
;; accordingly, depending on whether it is a chromatic or microtonal pitch
(let ((mc (make-chord ’(cqs4 e4 gqf4 b4 dqfb5 £5)
:midi-channel 11
:microtones-midi-channel 12)))
(loop for p in (data mc) collect (midi-channel p)))

=> (12 11 12 11 12 11)
SYNOPSIS:

(defun make-chord (note-list &key (id nil) (auto-sort t) (midi-channel 0)
(microtones-midi-channel 0) (force-midi-channel nil))

16.2.163 chord/no-accidental

[chord] [Methods |
ARGUMENTS:

- A chord object.
RETURN VALUE:
Always returns NIL.
EXAMPLE:

;55 Make a chord, print the SHOW-ACCIDENTAL slots of the pitch objects it
;55 contains; then call the method and print the same slots again to see the
;55 change.

(let ((chrd (make-chord ’(cs4 e4 fs4 af4d bf4))))
(print (loop for p in (data chrd) collect (show-accidental p)))
(no-accidental chrd)
(print (loop for p in (data chrd) collect (show-accidental p))))

=>

(TTTTT
(NIL NIL NIL NIL NIL)

SYNOPSIS:

(defmethod no-accidental ((c chord))

16 SC/NAMED-OBJECT 327

16.2.164 chord/output-midi-note

[chord] [Methods |
ARGUMENTS:

- A chord object.

A number that is the start time in seconds of the given chord within the
output MIDI file.

A decimal number between 0.0 and 1.0 that is the amplitude of the given
chord in the output MIDI file.

A number that is the duration in seconds of the given chord in the output
MIDI file.

RETURN VALUE:
The corresponding data in list form.
EXAMPLE:

;; Generate the MIDI-related data required for a 5-note chord that starts 100
;; seconds into the output MIDI file, with an amplitude of 0.5 and a duration
;; of 13.0 seconds.
(let ((chrd (make-chord ’(cs4 e4 fs4 af4d bf4))))

(output-midi-note chrd 100.0 0.5 13.0))

channel -1)
channel -1)
channel -1)
channel -1)
channel -1))

=> (#i(midi time 100.0 keynum 61 duration 13.0 amplitude
#i(midi time 100.0 keynum 64 duration 13.0 amplitude
#i(midi time 100.0 keynum 66 duration 13.0 amplitude
#i(midi time 100.0 keynum 68 duration 13.0 amplitude
#i(midi time 100.0 keynum 70 duration 13.0 amplitude

O O O O O
[S2I¢) BN RGN]

SYNOPSIS:

(defmethod output-midi-note ((c chord) time amplitude duration)

16.2.165 chord/pitch-

[chord] [Methods |
ARGUMENTS:

- A first chord object.
- A second chord object.

RETURN VALUE:

16 SC/NAMED-OBJECT 328

A positive or negative decimal number.
EXAMPLE:

;3 The method measures the distance between the first (lowest) pitches of the
;35 chord omnly.
(let ((chrd-1 (make-chord ’(c4 e4 g4)))
(chrd-2 (make-chord ’(d4 e4 fs4 a4))))
(pitch- chrd-2 chrd-1))

=> 2.0
;;; Passing the lower chord as the first argument produces a negative result
(let ((chrd-1 (make-chord ’(c4 e4 g4)))
(chrd-2 (make-chord ’(d4 e4 fs4 a4))))
(pitch- chrd-1 chrd-2))
=> -2.0

SYNOPSIS:

(defmethod pitch- ((cl chord) (c2 chord))

16.2.166 chord/respell-chord

[chord | [Methods |
ARGUMENTS: RETURN VALUE: EXAMPLE: DATE: SYNOPSIS:

(defmethod respell-chord ((c chord) &optional verbose)

16.2.167 chord/set-midi-channel

[chord | [Methods |
ARGUMENTS:

- A chord object.

- An integer that is to be the MIDI channel for chromatic pitches in the
given chord object.

- An integer that is to be the MIDI channel for microtonal pitches in the
given chord object.

RETURN VALUE:

16 SC/NAMED-OBJECT 329

Always returns NIL.
EXAMPLE:

;5 Returns NIL
(let ((chrd (make-chord ’(c4 e4 gqs4 bqf4 d5 £5)
:midi-channel 11
:microtones-midi-channel 12)))
(set-midi-channel chrd 3 4))

=> NIL

;; Print the value of the MIDI slot for each of the pitch objects contained in
;3 the chord object before and after setting
(let ((chrd (make-chord ’(c4 e4 ggqs4 bqf4 d5 £5)
:midi-channel 11
:microtones-midi-channel 12)))
(print (loop for p in (data chrd) collect (midi-channel p)))
(set-midi-channel chrd 3 4)
(print (loop for p in (data chrd) collect (midi-channel p))))

=>
(11 11 12 12 11 11)
(3344 33)
SYNOPSIS:

(defmethod set-midi-channel ((c chord) midi-channel microtones-midi-channel)

16.2.168 chord/sort-pitches

[chord] [Methods |
ARGUMENTS:

- A chord object.
OPTIONAL ARGUMENTS:

- The symbol ’ASCENDING or ’DESCENDING to indicate whether to sort the
given pitch objects from low to high or high to low.
Default = >ASCENDING.

RETURN VALUE:

16 SC/NAMED-OBJECT

Returns a list of pitch obects.
EXAMPLE:

;; Apply the method with no optional argument (defaults to ’ASCENDING) and
;; collect and print the data of the pitch objects in the resulting list
(let ((chrd (make-chord ’(d5 c4 ggqs4 bqfb5 f5 e4)
:midi-channel 11
:microtones-midi-channel 12)))
(print (loop for p in (sort-pitches chrd) collect (data p))))

=> (C4 E4 GQS4 D5 F5 BQF5)
;5 Sort from high to low
(let ((chrd (make-chord ’(d5 c4 gqs4 bqfb5 f5 e4)
:midi-channel 11
:microtones-midi-channel 12)))
(print (loop for p in (sort-pitches chrd ’descending) collect (data p))))
=> (BQF5 F5 D5 GQS4 E4 C4)
SYNOPSIS:

(defmethod sort-pitches ((c chord) &optional (order ’ascending))

16.2.169 chord/transpose

[chord] [Methods |
ARGUMENTS:

- A chord object.

- A positive or negative integer or decimal number indicating the number of
semitones by which the pitches of the given chord object are to be
transposed.

RETURN VALUE:
Returns a chord object.
EXAMPLE:

;5 Returns a chord obejct

(let ((chrd (make-chord ’(c4 e4 g4))))
(transpose chrd 3))

330

16 SC/NAMED-OBJECT 331

=>

CHORD: auto-sort: T, marks: NIL, micro-tone: NIL

SCLIST: sclist-length: 3, bounds-alert: T, copy: T
LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL
NAMED-OBJECT: id: NIL, tag: NIL,

data: (

[...]

)

;; Accepts positive and negative integers and decimal numbers
(let ((chrd (make-chord ’(c4 e4 g4))))
(pitch-list-to-symbols (data (transpose chrd 3))))

=> (EF4 G4 BF4)

(let ((chrd (make-chord ’(c4 e4 g4))))
(pitch-list-to-symbols (data (transpose chrd -3))))

=> (A3 CS4 E4)

(let ((chrd (make-chord ’(c4 e4 g4))))
(pitch-list-to-symbols (data (transpose chrd -3.17))))

=> (AQF3 CQS4 EQF4)

SYNOPSIS:

(defmethod transpose ((c chord) semitones &key ignorel ignore2 ignore3)

16.2.170 sclist/circular-sclist

[sclist | [Classes]
NAME:

circular-sclist
File: circular-sclist.lsp

Class Hierarchy: named-object -> linked-named-object -> sclist ->
circular-sclist

Version: 1.0.0-beta?2

16 SC/NAMED-OBJECT

Project:

Purpose:

Author:
Creation date:

$$ Last modified:

slippery chicken (algorithmic composition)
Implementation of the circular-sclist class which offers
the use of a function to cycle through the values in the
sclist, starting at the beginning again once we’ve
reached the end.

Michael Edwards: m@michael-edwards.org

February 19th 2001

21:25:56 Mon May 14 2012 BST

SVN ID: $Id: circular-sclist.lsp 1982 2012-05-24 15:35:54Z medward2 $

16.2.171 circular-sclist/assoc-list

[circular-sclist | [Classes |

NAME:
assoc-list
File:

Class Hierarchy:

Version:
Project:

Purpose:

Author:
Creation date:

$$ Last modified:

assoc-list.1lsp

named-object -> linked-named-object -> sclist ->
circular-sclist -> assoc-list

1.0.0-beta2

slippery chicken (algorithmic composition)
Implementation of the assoc-list class that is somewhat
like the lisp association list but with more
error—checking.

Michael Edwards: m@michael-edwards.org

February 18th 2001

08:15:35 Mon May 7 2012 BST

SVN ID: $Id: assoc-list.lsp 1982 2012-05-24 15:35:54Z medward2 $

332

16 SC/NAMED-OBJECT 333

16.2.172 assoc-list/add

[assoc-list | [Methods |
ARGUMENTS:

- A key/data pair as a quoted list.
- The assoc-list object to which it is to be added.

OPTIONAL ARGUMENTS:

- (This optional argument will be ignored; it exists only because of its use
in the recursive-assoc-list class).

RETURN VALUE:

Returns T if the specified named-object is successfully added to the given
assoc-list.

Returns an error if an attempt is made to add NIL to the given assoc-list
or if the given named-object is already present in the given assoc-list.

EXAMPLE:

(let ((al (make-assoc-list ’test ’((jim beam)
(four roses)
(wild turkey)))))
(add ’ (makers mark) al))

=> T

(let ((al (make-assoc-list ’test ’((jim beam)
(four roses)
(wild turkey)))))
(add ’ (makers mark) al)
(get-data ’makers al))

=>
NAMED-OBJECT: id: MAKERS, tag: NIL,
data: MARK

(let ((al (make-assoc-list ’test ’((jim beam)
(four roses)
(wild turkey)))))
(add ’(makers mark) al)
(get-position ’makers al))

16 SC/NAMED-OBJECT 334

=> 3
(let ((al (make-assoc-list ’test ’((jim beam)
(four roses)
(wild turkey)))))
(add ’ (knob creek) al))
=>T
SYNOPSIS:

(defmethod add (named-object (al assoc-list) &optional ignore)

16.2.173 assoc-list/add-to-list-data

[assoc-list | [Methods |
ARGUMENTS:

- An item of any type.
- A given key that must be present in the given assoc-list.
- The given assoc-list.

RETURN VALUE:
Returns the whole named-object to which the new element was added.

This method will abort with an error if a key is sought which does not
exist within the given assoc-list. For such cases, use
add-to-list-data-force instead.

EXAMPLE:

(let ((al (make-assoc-list ’test ’((cat felix)
(dog (fido spot))
(cow bessie)))))
(add-to-list-data ’rover ’dog al))

=>

NAMED-OBJECT: id: DOG, tag: NIL,
data: (FIDO SPOT ROVER)
SYNOPSIS:

(defmethod add-to-list-data (new-element key (al assoc-list))

16 SC/NAMED-OBJECT 335

16.2.174 assoc-list/add-to-list-data-force

[assoc-list | [Methods |
ARGUMENTS:

- A (new) element of any type.
- A given key that may or may not be present in the given assoc-list.
- The the given assoc-list.

RETURN VALUE:

Returns the whole named-object to which the element was added when used
with a key that already exists within the given assoc-list.

Returns T when used with a key that does not already exist in the given
assoc-list.

EXAMPLE:

(let ((al (make-assoc-list ’test ’((cat felix)
(dog (fido spot))
(cow bessie)))))
(add-to-list-data-force ’rover ’dog al))

=>
NAMED-OBJECT: id: DOG, tag: NIL,
data: (FIDO SPOT ROVER)
(let ((al (make-assoc-list ’test ’((cat felix)
(dog (fido spot))
(cow bessie)))))
(add-to-list-data-force ’wilbur ’pig al)
(get-keys al))
=> (CAT DOG COW PIG)
SYNOPSIS:

(defmethod add-to-list-data-force (new-element key (al assoc-list))

16.2.175 assoc-list/get-data

[assoc-list | [Methods |
ARGUMENTS:

16 SC/NAMED-OBJECT

- A symbol that is the key (id) of the named-object sought.
- The assoc-list object in which it is be sought.

OPTIONAL ARGUMENTS:

- T or NIL to indicate whether a warning is printed if the specified key
cannot be found within the given assoc-list. T = print. Default = T.
Mostly we define whether we want to warn in the instance itself, but
sometimes it would be good to warn or not on a call basis, hence the
optional argument.

RETURN VALUE:

A named-object is returned if the specified key is found within the given
assoc-list object.

NIL is returned and a warning is printed if the specified key is not found
in the given assoc-list object.

EXAMPLE:

(let ((al (make-assoc-list ’test ’((jim beam)
(four roses)
(wild turkey)))))
(get-data ’four al))

=>
NAMED-OBJECT: id: FOUR, tag: NIL,
data: ROSES

(let ((al (make-assoc-list ’test ’((jim beam)
(four roses)
(wild turkey)))))
(get-data ’jack al))

=> NIL
WARNING:

assoc-list::get-data: Could not find data with key JACK in assoc-list with

id TEST

(let ((al (make-assoc-list ’test ’((jim beam)
(four roses)

(wild turkey)))))
(get-data ’jack al t))

336

16 SC/NAMED-OBJECT 337

=> NIL
WARNING:
assoc-list::get-data: Could not find data with key JACK in assoc-list with
id TEST
(let ((al (make-assoc-list ’test ’((jim beam)
(four roses)
(wild turkey)))))
(get-data ’jack al nil))
=> NIL
SYNOPSIS:

(defmethod get-data (key (al assoc-list) &optional (warn t))

16.2.176 assoc-list/get-data-data

[assoc-list | [Methods |
ARGUMENTS:

- The assoc-list key symbol associated with the data list which is sought.
- The assoc-list in which it is to be sought.

OPTIONAL ARGUMENTS:

- T or NIL to indicate whether to print a warning if no such named-object
can be found within the given assoc-list (default = T).

RETURN VALUE:

If the given key is found within the given assoc-list, the data associated
with that key is returned.

EXAMPLE:

(let ((al (make-assoc-list ’test ’((jim beam)
(four roses)
(wild turkey)))))
(get-data-data ’jim al))

=> BEAM

(let ((al (make-assoc-list ’test ’((jim beam)

16 SC/NAMED-OBJECT 338

(four roses)
(wild turkey)))))
(get-data-data ’jack al))
=> NIL
WARNING:
assoc-list::get-data: Could not find data with key JACK in assoc-list with
id TEST
SYNOPSIS:

(defmethod get-data-data (key (al assoc-list) &optional (warn t))

16.2.177 assoc-list/get-first

[assoc-list | [Methods |
ARGUMENTS:

- An assoc-list object.
RETURN VALUE:

A named-object that is the first object in the DATA slot of the given
assoc-list object.

EXAMPLE:

(let ((al (make-assoc-list ’test ’((jim beam)
(four roses)
(wild turkey)))))

(get-first al))

=>

NAMED-OBJECT: id: JIM, tag: NIL,

data BEAM

SYNOPSIS:

(defmethod get-first ((al assoc-list))

16.2.178 assoc-list/get-keys

[assoc-list | [Methods |
ARGUMENTS:

16 SC/NAMED-OBJECT 339

- An assoc-list.
OPTIONAL ARGUMENTS:

- Optional argument: T or NIL (default T) to indicate whether a warning
should be printed when the first argument is a recursive assoc-list.

RETURN VALUE:

A 1list of the keys only of all top-level association list pairs in the
given assoc-list.

get-keys is a method of the assoc-list class and therefore returns only
top-level keys if accessing a recursive assoc-list.

EXAMPLE:

(let ((al (make-assoc-list ’test ’((cat felix)
(dog fido)
(cow bessie)))))
(get-keys al))

=> (CAT DOG COW)
(let ((al (make-assoc-list ’test ’((cat felix)
(dog ((scottish terrier)
(german shepherd)
(irish wolfhound)))
(cow bessie)))))
(get-keys al))
=> (CAT DOG COW)
SYNOPSIS:

(defmethod get-keys ((al assoc-list) &optional (warn t))

16.2.179 assoc-list/get-last

[assoc-list | [Methods |
ARGUMENTS:

- An assoc-list.

16 SC/NAMED-OBJECT

RETURN VALUE:
The last object in the data list of a given assoc-list.
EXAMPLE:

(let ((al (make-assoc-list ’test ’((jim beam)
(four roses)
(wild turkey)))))
(get-last al))
=>
NAMED-OBJECT: id: WILD, tag: NIL,
data TURKEY

SYNOPSIS:

(defmethod get-last ((al assoc-list))

16.2.180 assoc-list/get-position

[assoc-list | [Methods |
ARGUMENTS:

- The assoc-list key symbol (named-object id) of the object for which the
position is sought.
- The assoc-list in which it is to be sought.

OPTIONAL ARGUMENTS:

- Optional argument: An indexing integer. In this case, get-position will
search for the given object starting part-way into the list, skipping all
objects located at indices lower than the given integer (default = 0).

RETURN VALUE:

The integer index of the named-object within the given assoc-list.
NIL is returned if the object is not present in the assoc-list starting

with the index number given as the start argument (i.e., in the entire list
if the optional start argument is omitted).

EXAMPLE:

340

16 SC/NAMED-OBJECT 341

(let ((al (make-assoc-list ’test ’((jim beam)
(four roses)
(wild turkey)))))
(get-position ’four al))
=> 1
(let ((al (make-assoc-list ’test ’((jim beam)
(four roses)
(wild turkey)))))
(get-position ’jack al))
=> NIL
(let ((al (make-assoc-list ’test ’((jim beam)
(four roses)
(wild turkey)))))
(get-position ’jim al 1))
=> NIL
SYNOPSIS:

(defmethod get-position (key (al assoc-list) &optional (start 0))

16.2.181 assoc-list/1-for-lookup

[assoc-list | [Classes]
NAME:

1-for-lookup
File: 1-for-lookup

Class Hierarchy: named-object -> linked-named-object -> sclist ->
circular-sclist -> assoc-list -> 1-for-lookup

Version: 1.0.0-beta2
Project: slippery chicken (algorithmic composition)
Purpose: Implementation of the 1-for-lookup class. The name

stands for L-System for Lookups (L for
Lindenmayer). This provides an L-System

16 SC/NAMED-OBJECT

Author:

Creation date:

function for generating sequences of numbers
from rules and seeds, and then using these
numbers for lookups into the assoc-list. In the
assoc list are stored groups of numbers, meant
to represent in the first place, for example,
rhythmic sequences. The grouping could be as
follows: ((2 3 7) (11 12 16) (24 27 29) and
would mean that a transition should take place
(over the length of the number of calls
represented by the number of L-Sequence results)
from the first group to the second, then from
the second to the third. When the first group
is in use, then we will simple cycle around the
given values, similar with the other groups.

The transition is based on a fibonacci algorithm
(see below).

The sequences are stored in the data slot. The l-sequence
will be a 1list like (31121 22312232331).
These are the references into the assoc-list (the 1, 2, 3
ids in the list below).

e.g. ((1 ((237) (11 16 12)))
(2 ((4 59 (13 14 17)))
(3 ((1 68) (15 18 19))))

Michael Edwards: m@michael-edwards.org

15th February 2002

$$ Last modified: 19:10:58 Tue May 8 2012 BST

SVN ID: $Id: l-for-lookup.lsp 1982 2012-05-24 15:35:54Z medward2 $

16.2.182 1-for-lookup/count-elements

[I-for-lookup | [Functions |

ARGUMENTS:

- A list of numbers or symbols (or anything which can be compared using

EQL) .

RETURN VALUE:

Returns a sorted list of two-element lists, each consisting of one list

342

16 SC/NAMED-OBJECT 343

element from the specified list and the number of times that element occurs
in the list.

EXAMPLE:

(count-elements (1 457 34154857323634541485732))
=> ((13) (22) (35) (46) (55) (61) (7 3) (82)

SYNOPSIS:

(defun count-elements (list)

16.2.183 l-for-lookup/do-lookup

[I-for-lookup | [Methods |
ARGUMENTS:

- An 1-for-lookup object.

- The start seed, or axiom, that is the initial state of the L-system. This
must be the key-id of one of the sequences.

- An integer that is the length of the sequence to be returned. NB: This
number does not indicate the number of L-system passes, but only the
number of elements in the list returned, which may be the first segment
of a sequence returned by a pass that actually generates a much longer
sequence.

OPTIONAL ARGUMENTS:

- A number which is the factor by which returned numerical values are to be
scaled. If NIL, the method will use the value in the given 1l-for-lookup
object’s SCALER slot instead. Default = NIL. NB: The value of the given
1-for-lookup object’s OFFSET slot is additionally used to increase
numerical values before they are returned.

RETURN VALUE:

This method returns three lists:

- The resulting sequence.

- The distribution of the values returned by the lookup.
- The L-sequence of the key-IDs.

EXAMPLE:

16 SC/NAMED-OBJECT

;; Create an 1-for-lookup object in which the sequences are defined such that

;; the transition takes place over the 3 given lists and from x to y to z, and
;; apply the do-lookup method to see the results. Each time one of these lists

is accessed, it will circularly return the next value.

(let ((1f1 (make-1-for-lookup

(do-lookup

=>
(AX1

BX1
CX3
BY2
Cy2
AY3
BY2
BY1
BZ1
BY2
BY1
AZ2
BzZ4

((CcX1 3)
(AY3 7)

BX2
BX3
AX3
BY1
BY3
CY3
CY2
BY2
BY3
CY3
AZ3
CY2

’1f1-

> ((1
(2
3
*((1
(2
(3
1f1

BX3
AX1
BX2
AY4
CY4
BY3
CY3
AY2
BY4
BZ1
BZ2
BZ5

(AX3 5)
(CY3 4)

(BZ25) (CZ5

12
2

NN WN
== N WN

2

=R NNDN
N NDNDN -

1

R NDN R

SYNOPSIS:

(defmethod do-lookup ((1flu l-for-lookup) seed

16.2.184

N NN WNDN
W Wk, W~

test

((ax1 ax2 ax3) (ayl ay2
((bx1 bx2 bx3) (byl by2
((cx1l cx2 cx3) (cy2 cy2
(122211))

(2123 2)
(2322233))))))

1 211))

AX2 AX3 BX1 AX1 BX2 CX1
BY1 BX1 BX2 AY1 AX2 AX3
BX3 BX1 AX1 AY3 BX2 AX2
BX1 CX1 BY2 BX2 AY1 BY3
BX2 BY4 CX2 BY1 BX3 BY2
AY1 BY4 BY1 BY2 AY2 AY3
BY2 AY1 BY3 CY4 BY4 AY2
BY3 CY2 BY4 BY1 AY3 BY2
AY3 AY4 AZ2 BZ3 BY1 BY2
BY2 AZ4 BZ2 CZ3 BZ3 AZ5
AY2 BZ3 CY4 BY2 AZ4 BZ4
BZ1 BZ2 CZ5 CZ1 BZ3 AZ3

232212322123
232232223321
212322123212
121232212322
221232212321
223222332123

l-for-lookup /do-simple-lookup

[I-for-lookup | [Methods |

ay3
by3
cy3

BX3
BX3
BY3
CY3
CY2
BY3
BY1
CY2
AY1
BY3
BZ5
BZ4

21

N = NN
N NN W

ay4) (azl az2 az3 az4 azb)))
by4) (bzl bz2 bz3 bz4 bz5)))

cy4) (czl cz2 cz3 cz4 cz5))))

BX1
BX1
CY2
BY4
CX3
AY4
BY2
BY3
AY2
BzZ4
BZ1
Cz2

5) (CZ2 2) (BZ5 5)

2
2
1
3
2

=N~ NN
= =N =N
= N RN
N NN W=
NN WN =
NP, N RPN
== N NN
== W NN

AX2
BX2
BX3
AX3
BY3
BY4
BY3
AY4
BZ4
BY4
AZ5

BX2
AX1
BX1
BX3
AY4
Cy4
AY3
BY4
AZ3
AY4
AZ1

BZ5),
(AX1 6) (BX2 11) (CX2 3) (BX3 11) (CX3 3) (BX1 12) (AX2
(CZ3 1) (BY4 14) (AY4 7) (AY1 8) (BY1 15) (AY2 8) (CY4 4)
(BY2 15) (AZ4 2) (Az5 2) (AZ1 3) (Az2 3) (BY3 15) (CZ4 1) (CY2 9) (BZ1 5)
1) (CZ1 2) (BZ3 5) (AZ3 3) (BZ4

CX2
AX2
CX2
BY1
BY4
BY1
AY4
BZ2
BY3
AZ1
BZ2

BX3
BX3
BY4
BX1
CY2
BY2
BY4
BY1
Cz2
AY1
AZ2

)
1
2
2
2
2

BX1
AY2
BX2
AY2
BY1
CY2
AY1
AZ1
BY4
BZ5
BY3

= NN ==
NNN - N
Wk, WN =
NP, Wk N
= R, NN W
NN = WN
N NDNN -

stop &optional scaler)

AX3
BX1
BX3
AX1
BX1
BY3
BY1
AY1
BZ5
BZ1
Cz4

BX2
CX1
CX3
BY2
AX2
BY4
Cz1
AY2
AY3
BY1
BZ3

6)

344

16 SC/NAMED-OBJECT

ARGUMENTS:

- An 1-for-lookup object.

- The start seed, or axiom, that is the initial state of the L-system. This
must be the key-id of one of the sequences.
- An integer that is the number of elements to be returned.

RETURN VALUE: EXAMPLE:

;3 Create an l-for-lookup object using three production rules and three
;; sequences of three lists. Applying do-simple-lookup returns the first
;; element of each sequence based on the L-sequence of keys created by the

rules of the give l-for-lookup object.
(1et ((1f1 (make-1l-for-lookup
’1fl-test
’((1 ((axl ax2 ax3) (ayl ay2
(2 ((bx1l bx2 bx3) (byl by2
(3 ((cxl cx2 cx3) (cy2 cy2
(1 (1 22211))
(2 (21232)
(3 (2322233)))))
(do-simple-lookup 1f1 1 21))

=> ((AX1 AX2 AX3) (BX1 BX2 BX3) (BX1 BX2
(AX1 AX2 AX3) (BX1 BX2 BX3) (AX1 AX2
(BX1 BX2 BX3) (BX1 BX2 BX3) (AX1 AX2
(BX1 BX2 BX3) (BX1 BX2 BX3) (AX1 AX2
(BX1 BX2 BX3))

SYNOPSIS:

ay3 ay4) (azl
by3 by4) (bzl
cy3 cy4) (czl

BX3) (BX1 BX2
AX3) (BX1 BX2
AX3) (BX1 BX2
AX3) (BX1 BX2

az2 az3 az4 azb)))
bz2 bz3 bz4 bz5)))
cz2 cz3 cz4 cz5))))

BX3) (AX1 AX2 AX3)
BX3) (CX1 CX2 CX3)
BX3) (CX1 CX2 CX3)
BX3) (CX1 CX2 CX3)

(defmethod do-simple-lookup ((1flu l-for-lookup) seed stop)

16.2.185 l-for-lookup/fibonacci

[Ifor-lookup | [Functions |
ARGUMENTS:

A number that is to be the test number.

RETURN VALUE:

A list of descending sequential Fibonacci numbers, of which list the last

element is O.

345

16 SC/NAMED-OBJECT 346

Also returns as a second individual value the first Fibonacci number that
is greater than the sum of the list returned, which will always be the sum
of that list plus one.

EXAMPLE:

;; Returns a list of consecutive Fibonacci numbers from O whose sum is equal to
;; or less than the value specified. The second number returned is the first

;; Fibonacci number whose value is greater than the sum of the list, and will
;; always be the sum of the list plus one.

(fibonacci 5000)

=> (1597 987 610 377 233 144 89 55 34 21 13 8 53 2 11 0), 4181

;3 The sum of the list
(+ 1597 987 610 377 233 144 89 55 34 21 13 8 53 2 1 1 0)

=> 4180
SYNOPSIS:

(defun fibonacci (max-sum)

16.2.186 l-for-lookup/fibonacci-start-at-2

[I-for-lookup | [Functions |
ARGUMENTS:

A number that is to be the test number.
RETURN VALUE:

A list of descending sequential Fibonacci numbers, of which list the last
element is 2.

Also returns as a second result the sum of the list.

EXAMPLE:

;; Returns a list whose sum is less than or equal to the number specified as
;; the function’s only argument
(fibonacci-start-at-2 17)

16 SC/NAMED-OBJECT 347

=> (56 3 2), 10
(fibonacci-start-at-2 20)
=> (853 2), 18

;; Two examples showing the different results of fibonacci
;3 vs. fibonacci-start-at-2

;s 1
(fibonacci 18)

=> (632110, 13
(fibonacci-start-at-2 18)
= (8532), 18

HH
(fibonacci 20)

=> (8532110, 21
(fibonacci-start-at-2 20)
=> (8 53 2), 18
SYNOPSIS:

(defun fibonacci-start-at-2 (max-sum)

16.2.187 l-for-lookup/fibonacci-transition

[I-for-lookup | [Functions |
ARGUMENTS:

- An integer that is the desired number of elements in the resulting list
(i.e., the number of repetitions over which the transition is to occur).

OPTIONAL ARGUMENTS:

- Repeating item 1 (starting state). This can be any Lisp type, including
lists. Default = 0.

- Repeating item 2 (target state): This can also be any Lisp type.
Default = 1.

16 SC/NAMED-OBJECT 348

RETURN VALUE:
A list.
EXAMPLE:

;3 Defaults to O and 1 (no optional arguments)
(fibonacci-transition 31)

=>(0000000100001001011101011011111)

;; Using optional arguments set to numbers
(fibonacci-transition 23 11 37)

=> (11 11 11 11 37 11 11 37 11 37 11 37 11 37 37 11 37 11 37 11 37 37 37)

;; Using lists
(fibonacci-transition 27 (1 2 3) (5 6 7))

=> ((123) (123 (123 (123 (67 (123 (123)GB67) 123)
(123)((B67) (123 (B67) (123)Be7) (123 (567) (66T
(123 (567) (667 (123) (567) (6567) (567) (567) (566T7))

SYNOPSIS:

(defun fibonacci-transition (num-items &optional
(iteml 0)
(item2 1))

16.2.188 I-for-lookup/fibonacci-transitions

[I-for-lookup | [Functions |
DATE:

18 Feb 2010

DESCRIPTION

This function builds on the concept of the function fibonacci-transition by
allowing multiple consecutive transitions over a specified number of
repetitions. The function either produces sequences consisting of
transitions from each consecutive increasing number to its upper

neighbor, starting from O and continuing through a specified number of
integers, or it can be used to produce a sequence by transitioning between
each element of a user-specified list of items.

16 SC/NAMED-OBJECT

ARGUMENTS:

- An integer indicating the number of repetitions over which the
transitions are to be performed.

- Either:

349

- An integer indicating the number of consecutive values, starting from
0, the function is to tramsition (i.e. 3 will produce a sequence that
transitions from O to 1, then from 1 to 2 and finally from 2 to 3), or

- A list of items of any type (including lists) through which the
function is to transition.

RETURN VALUE:

A list.

EXAMPLE:

;; Using just an integer transitions from

(fibonacci-transitions 76 4)

00001
21222

;; Using a list transitions consecutively

0000
2222

1
3

1
3

01
23

(fibonacci-transitions 152 (1 2 3 4))

=>(

DWW N -
W N ==
DWW N
D W e
W N -
D W e

1
1
2
3

D W e

;3 A list of lists is also viable

W N -

(fibonacci-transitions

= ((123) (123)
(123 (454
(454 (454
(321) (454
(454) 321

SYNOPSIS:

(defun fibonacci-transitions (total-items levels)

1
(1
(4
(3
(3

W N =

D wWw N e
DWW N
D W e

45 > ((1
23 (1
23) (4
54) (4
21) (4
2 1) (3

D> wWw N e

2

N oo o N

W NN

3)

3)
4)
4)
4)
D)

W w N -

DWW N
D W e

(1
1
(4
3
3

NN OTNN

DWW N e

0 to 1 below that

w =

through

D W e

4)

3)
3)
4)
iy
1

w =
N O
w =

W N -
DWW N

(4
(4
3
(4
(3

N N OO

NN RN

N O
w =

w =
w =
N =

that list

DWW N
D W e

D wWw N -
DWW N -
[N VI V)

DN

4)
4)
1)
4)
1)

(123
(12 3)
(4 54
321D
321

integer

w =
w =
w
w

B wWw N -
D W e
S W N
DWW N -

(12 3)
(4 5 4)
(32 1)
(321)
(32 1)

w N
w =
p—

W N -
IV N
D W N e
IV N
D W e
gpboow

(4 5 4)
(123)
(4 5 4)
(3 21)
(32 1)

16 SC/NAMED-OBJECT 350

16.2.189 1-for-lookup/get-l-sequence

[I-for-lookup | [Methods |
ARGUMENTS:

- An 1-for-lookup object.

- The start seed, or axiom, that is the initial state of the L-system. This
must be the key-id of one of the sequences.

- An integer that is the length of the sequence to be returned. NB: This
number does not indicate the number of L-system passes, but only the
number of elements in the list returned, which may be the first segment
of a sequence returned by a pass that actually generates a much longer
sequence.

RETURN VALUE:

A list that is the L-sequence of rule key-ids.

The second value returned is a count of each of the rule keys in the
sequence created, in their given order.

EXAMPLE:

;; Create an 1-for-lookup object with three rules and generate a new sequence
;5 of 29 rule keys from those rules. The 1-for-lookup object here has been
;; created with the SEQUENCES argument set to NIL, as the get-l-sequence
;; function requires no sequences. The second list returned indicates the
;3 number of times each key appears in the resulting sequence (thus 1 appears 5
times, 2 appears 12 times etc.)
(let ((1f1 (make-l-for-lookup ’1fl-test
NIL
> (1 (2))
(2 (13
(3 321N
(get-1-sequence 1f1 1 29))

=>(23232132323213232133213232321), (5612 12)

;; A similar example using symbols rather than numbers as keys and data
(let ((1f1l (make-1-for-lookup ’1lfl-test
NIL
>((a (b))
(b (a c))
(c (c)N
(get-1l-sequence 1fl ’a 19))

16 SC/NAMED-OBJECT 351

=> (ACCBACCBACBCBACCBAOC, (6509)
SYNOPSIS:

(defmethod get-l-sequence ((1flu 1-for-lookup) seed stop-length)

16.2.190 l-for-lookup/get-linear-sequence

[I-for-lookup | [Methods |
ARGUMENTS:

- An 1-for-lookup object.

- The seed, which is the starting key for the resulting sequence. This must
be the key-ID of one of the sequences.

- An integer that is the number of elements to be in the resulting list.

OPTIONAL ARGUMENTS:

- T or NIL to indicate whether to reset the pointers of the given circular
lists before proceeding. T = reset. Default = T.

RETURN VALUE:
A list of results of user-defined length.
EXAMPLE:

(let ((1f1l (make-1-for-lookup ’1lfl-test
»((1 (2 3))
(2 ((312))N
(8 (1))
NIL)))
(get-linear-sequence 1f1 1 23))

=>(123131213122313121312223)
SYNOPSIS:

(defmethod get-linear-sequence ((1flu l-for-lookup) seed stop-length
&optional (reset t))

16 SC/NAMED-OBJECT 352

16.2.191 1-for-lookup/make-l-for-lookup

[Ifor-lookup | [Functions |
ARGUMENTS:

- A symbol that will be the object’s ID.

- A sequence (list) or list of sequences, that serve(s) as the initial
material, from which the new sequence is to be produced.

- A production rule or list of production rules, each consisting of a
predecessor and a sucessor, defining how to expand and replace the
individual predecessor items.

OPTIONAL ARGUMENTS:

keyword arguments:

- :auto-check-redundancy. Default = NIL.

- :scaler. Factor by which to scale the values returned by
do-lookup. Default = 1. Does not modify the original data.

- :offest. Number to be added to values returned by do-lookup (after they
are scaled). Default = NIL. Does not modify the original data.

RETURN VALUE:

Returns an 1-for-lookup object.

EXAMPLE:

;; Create an 1-for-lookup object based on the Lindenmayer rules (A->AB) and

;5 (B->A), using the defaults for the keyword arguments
(make-1-for-lookup ’l-sys-a

»((1 (@)
(2 ()N
71 (1 2)) 2 1NN
=>
L-FOR-LOOKUP:
[...]

l-sequence: NIL

l-distribution: NIL

11-distribution: NIL

group-indices: NIL

scaler: 1

offset: O

auto-check-redundancy: NIL
ASSOC-LIST: warn-not-found T

16 SC/NAMED-OBJECT

CIRCULAR-SCLIST: current O

SCLIST: sclist-length: 2, bounds-alert: T, copy: T
LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL
NAMED-OBJECT: id: L-SYS-A, tag: NIL,

data: (

[...]

;5 A larger list of sequences, with keyword arguments specified
(make-1-for-lookup ’1lfl-test
»((1 ((234) (56 T1))
(2 ((345) (67 8)))
(3 ((456) (789))))
(1 (3)) (2 3 1)) B (1 2)))
:scaler 1
:offset O
rauto-check-redundancy nil)

SYNOPSIS:

(defun make-l-for-lookup (id sequences rules &key (auto-check-redundancy nil)

(offset 0)
(scaler 1))

16.2.192 l-for-lookup/remix-in

[Ifor-lookup | [Functions |
ARGUMENTS:

- A list.
OPTIONAL ARGUMENTS:

keyword arguments:

- :remix-in-fib-seed. A number that indicates how frequently an earlier
element will be mixed back into the original list. The higher the number,
the less often earlier elements are remixed in. Default = 13.

- :mirror. T or NIL to indicate whether the method should pass backwards
through the original list once it has reached the end. T = pass
backwards. Default = NIL.

- :test. The function used to determine the third element in the list. This
function must be able to compare whatever data type is in the
list. Default = #’eql.

RETURN VALUE:

353

354

16 SC/NAMED-OBJECT

Returns a new list.

EXAMPLE:

;5 Straightforward usage with default values

(remix-in (fibonacci-transitions 320 ’(1 2 3 4 5)))

>(11111111111111111111111121111111111112

11111112111121121121212121212121221221
22221222222222222222222223221221221213

12212121322132123121312312131232132132
13131231312133323213313131331313133313
31331313133231413331331331413133231413

34133143241314324131434234134241324413
24144423414424142441424244414424424142

44252424441442452424244252424542452452
42524524252454254255242525435252554255

25525252553425255525525535252553525255
535525535253552535255535525535253552)

:remix-in-fib-seed value causes the list to be mixed back into

;; itself at more frequent intervals

; A lower

’

:remix-in-fib-seed 3)

(remix-in (fibonacci-transitions 320 (1 2 3 4 5))

>(11111111111111111111111121111111111112

11111112111121121121212121212121221221
22221222222222222222222223212122121221

31221212312123121231213213123121321312

31213312133221331313213133131331313313
13313233131331313413133132331314313133
24133142331413423143241342314324134241
34241342414423244142442414424244242441
42442424425244242442424524244242542425

424254252452435425245242542525425351425
25525245352552535525245352553525535255
35255352553525535255353552535535255353

553535525 3)

;5 Setting the keyword argument <mirror> to T causes the method to reverse back

;5 through the original list after the end has been reached

(remix-in (fibonacci-transitions 320 (1 2 3 4 5))

:remix-in-fib-seed 3

:mirror t)

>(11111111111111111111111121111111111112

11111112111121121121212121212121221221

355

16 SC/NAMED-OBJECT

22221222222222222222222223212122121221

31221212312123121231213213123121321312

31213312133221331313213133131331313313
13313233131331313413133132331314313133
24133142331413423143241342314324134241
34241342414423244142442414424244242441
42442424425244242442424524244242542425

424254252452435425245242542525425351425

255252453525525355252453525535255352515
352553525535 25535255353552535535255353
55353552535535355353553535535355353553

53553535535355353553545535355353543535

53545535354353554534535445353454435445
345443544534544345443454434444454344414
44344454444444434444444444444444444444
444344444443444434444344434435434443414

344344433445334443343434534334353343414
35343353433534335343353433534335342353
53342533524335253253523425325352352532

52532524325252253522525225252352522525

22525225252252522525225252152522525125

25125251251521525125152152512515125151

251511515215 15115151152511515115151151

51151521515115151151511515115151151511

515115141)

SYNOPSIS:

(defun remix-in (list &key (remix-in-fib-seed 13) (mirror nil) (test #’eql))

I-for-lookup /reset

16.2.193

[I-for-lookup | [Methods |

ARGUMENTS:

- An 1-for-lookup object.

OPTIONAL ARGUMENTS:

- (an optional IGNORE argument for internal use only).

RETURN VALUE:

Always T.

16 SC/NAMED-OBJECT 356

SYNOPSIS:

(defmethod reset ((1flu l-for-lookup) &optional ignore)

16.2.194 assoc-list/make-assoc-list

[assoc-list | [Functions |

FUNCTION:

A function that provides a shortcut to creating an assoc-list, filling it
with data, and assigning a name to it.

ARGUMENTS:

- The name of the assoc-list to be created.
- The data with which to fill it.

OPTIONAL ARGUMENTS:

keyword arguments:
- :warn-not-found. T or NIL to indicate whether a warning is printed when an
index which doesn’t exist is used for lookup. T = warn. Default = T.

RETURN VALUE:
Returns the assoc-list as a named-object.
EXAMPLE:

(make-assoc-list ’looney-tunes ’((bugs bunny)
(daffy duck)
(porky pig)))
=>
ASSOC-LIST: warn-not-found T
CIRCULAR-SCLIST: current O
SCLIST: sclist-length: 3, bounds-alert: T, copy: T
LINKED-NAMED-OBJECT: previous: NIL
this: NIL
next: NIL
NAMED-0BJECT: id: LOONEY-TUNES, tag: NIL,
data: (
NAMED-OBJECT: id: BUGS, tag: NIL,
data: BUNNY

16 SC/NAMED-OBJECT 357

NAMED-OBJECT: id: DAFFY, tag: NIL,
data: DUCK

NAMED-OBJECT: id: PORKY, tag: NIL,
data: PIG)

SYNOPSIS:

(defun make-assoc-list (id al &key (warn-not-found t))

16.2.195 assoc-list/map-data

[assoc-list | [Methods |
ARGUMENTS:

- The assoc-list to which the function is to be applied.
- The function to be applied. This must take the data in the assoc-list as
a first argument.

OPTIONAL ARGUMENTS:

- Optional argument(s): Further arguments for the function.

RETURN VALUE:

Returns a list of the values returned by the function call on the data.
EXAMPLE:

(let ((al (make-assoc-list ’al-test
7((1 (1 23 4)
(2 (567 8))
(3 (9 10 11 12))))))
(map-data al #’(lambda (y)
(loop for i in (data y) collect
(x 1 2)))))

=> ((2 4 6 8) (10 12 14 16) (18 20 22 24))

SYNOPSIS:

(defmethod map-data ((al assoc-list) function &optional further-arguments)

16 SC/NAMED-OBJECT

16.2.196 assoc-list/recursive-assoc-list

[assoc-list | [Classes |
NAME:

recursive-assoc-1i
File:

Class Hierarchy:

Version:
Project:

Purpose:

Author:
Creation date:

$$ Last modified:

SVN ID: $Id: recursive-assoc-list.lsp 1982 2012-05-24 15:35:54Z medward2 $

st
recursive-assoc-list.lsp

named-object -> linked-named-object -> sclist ->
circular-sclist -> assoc-list -> recursive-assoc-list

1.0.0-beta2
slippery chicken (algorithmic composition)

Extension of the assoc-list class to allow and
automatically instantiate association lists inside of
association lists to any level of nesting. E.g.
(setf x
>((1 ome)
(2 two)
(3 ((cat "cat")
(dog ((mickey mouse)
(donald duck)
(daffy duck)
(uncle ((james dean)
(dean martin)
(fred astaire)
(ginger ((wolfgang mozart)
(johann bach)
(george gershwin)))))))
(mouse "mouse")))
(4 four)))

Michael Edwards: m@michael-edwards.org
March 18th 2001

10:27:35 Thu May 17 2012 BST

358

16 SC/NAMED-OBJECT 359

16.2.197 recursive-assoc-list/add

[recursive-assoc-list | [Methods |

ARGUMENTS:

- A key/data pair.
- A recursive-assoc-list object.

OPTIONAL ARGUMENTS:

- A list that is the FULL-REF, i.e. a recursive path of keys, down to the
nested level where the new element is to be placed.

RETURN VALUE:

Returns T if the specified named-object is successfully added to the given
recursive-assoc-list.

Returns an error if an attempt is made to add NIL to the given
recursive-assoc-list or if the given named-object is already present at the
same level within the given recursive-assoc-list.

EXAMPLE:

;; Adding an element while specifiying no optional argument results in the new
;; element being placed at the end of the top level by default (evident here by
;; the fact that the ref for (MAKERS) is a single-item list)
(let ((ral (make-ral ’mixed-bag
’((jim beam)
(wild turkey)
(four ((roses red)
(violets ((blue velvet)
(red ((dragon den)
(viper nest)
(fox hole)))
(wvhite ribbon)))))))))
(add ’ (makers mark) ral)
(get-all-refs ral))

=> ((JIM) (WILD) (FOUR ROSES) (FOUR VIOLETS BLUE) (FOUR VIOLETS RED DRAGON)
(FOUR VIOLETS RED VIPER) (FOUR VIOLETS RED FOX) (FOUR VIOLETS WHITE)
(MAKERS))

;5 A list that is a path of keys (FULL-REF) to the desired recursive level must
;; be given as the optional argument in order to place the specified element

16 SC/NAMED-OBJECT 360

;; deeper in the given recursive-assoc-list object
(let ((ral (make-ral ’mixed-bag
’((jim beam)
(wild turkey)
(four ((roses red)
(violets ((blue velvet)
(red ((dragon den)
(viper nest)
(fox hole)))

(white ribbon)))))))))
(add ’(yellow sky) ral ’(four violets))
(get-all-refs ral))

=> ((JIM) (WILD) (FOUR ROSES) (FOUR VIOLETS BLUE) (FOUR VIOLETS RED DRAGON)

(FOUR VIOLETS RED VIPER) (FOUR VIOLETS RED FOX) (FOUR VIOLETS WHITE)
(FOUR VIOLETS YELLOW))

;; Attempting to add an element that is already present at the given level of
;; the given recursive-assoc-list object results in an error
(let ((ral (make-ral ’mixed-bag
> ((jim beam)
(wild turkey)
(four ((roses red)
(violets ((blue velvet)
(red ((dragon den)
(viper nest)
(fox hole)))

(white ribbon)))))))))
(add ’ (makers mark) ral)

(add ’ (makers mark) ral))

=>

assoc-list::add: Can’t add MAKERS to assoc-list with id MIXED-BAG
because key already exists!
[Condition of type SIMPLE-ERROR]

;; Attempting to add NIL also results in an error
(let ((ral (make-ral ’mixed-bag
?((jim beam)
(wild turkey)
(four ((roses red)
(violets ((blue velvet)
(red ((dragon den)
(viper nest)
(fox hole)))
(white ribbon)))))))))

16 SC/NAMED-OBJECT 361

(add ’() ral))

=>
assoc-list::add: named-object is NIL!
[Condition of type SIMPLE-ERROR]

SYNOPSIS:

(defmethod add (named-object (ral recursive-assoc-list) &optional ref)

16.2.198 recursive-assoc-list/add-empty-parcel

[recursive-assoc-list | [Methods |

ARGUMENTS:

- A recursive-assoc-list object.
- A symbol that will be the ID of the new, empty recursive-assoc-list
object that is to be added.

OPTIONAL ARGUMENTS:

- <new-class> The name of an existing subclass of recursive-assoc-list that
the parcel should be promoted to.

RETURN VALUE:

A recursive-assoc-list object with DATA of NIL (the "empty parcel")

EXAMPLE:

;5 Add two new empty parcels (the first a recursive-assoc-list, by default, the
;3 second a rthm-seq-palette) and return the new list of REFS:
(let ((ral (make-ral ’mixed-bag
> ((jim beam)
(wild turkey)
(four ((roses red)
(violets ((blue velvet)
(red ((dragon den)
(viper nest)
(fox hole)))
(wvhite ribbon)))))))))
(add-empty-parcel ral ’bricolage)
(add-empty-parcel ral ’rsp ’rthm-seq-palette)
(get-all-refs ral))

16 SC/NAMED-OBJECT 362

Mark set
=>

((JIM) (WILD) (FOUR ROSES) (FOUR VIOLETS BLUE) (FOUR VIOLETS RED DRAGON)

(FOUR VIOLETS RED VIPER) (FOUR VIOLETS RED FOX) (FOUR VIOLETS WHITE)
(BRICOLAGE) (RSP))

SYNOPSIS:

(defmethod add-empty-parcel ((ral recursive-assoc-list) id &optional new-class)

16.2.199 recursive-assoc-list/assoc-list-id-list

[recursive-assoc-list | [Functions |

ARGUMENTS:
A list.
RETURN VALUE:

T or NIL indicating whether the atoms of the given list are all capable of
being used as assoc-list IDs. T = all can be used as assoc-list IDs.

EXAMPLE:

;; All of the elements in this list are either a symbol, a number or a
;; string. The list therefore returns a T when tested.
(let ((alil ’(jim beam 3 "Allegro" 5 flute)))

(assoc-list-id-list alil))

=> T
;5 This list fails, as the last element is a list (and therefore not of type
;5 string, number or symbol)
(let ((alil ’(jim beam 3 "Allegro" 5 (flute))))
(assoc-list-id-list alil))
=> NIL

SYNOPSIS:

(defun assoc-list-id-list (id-list)

16 SC/NAMED-OBJECT 363

16.2.200 recursive-assoc-list/ensemble

[recursive-assoc-list | [Classes |

NAME:
ensemble
File: ensemble.lsp

Class Hierarchy: named-object -> linked-named-object -> sclist ->
circular-sclist -> assoc-list -> recursive-assoc-list ->

ensemble
Version: 1.0.0-beta2
Project: slippery chicken (algorithmic composition)
Purpose: Implementation of the ensemble class.
Author: Michael Edwards: m@michael-edwards.org
Creation date: 4th September 2001

$$ Last modified: 12:28:40 Wed Apr 18 2012 BST

SVN ID: $Id: ensemble.lsp 1982 2012-05-24 15:35:54Z medward2 $

16.2.201 ensemble/get-players

[ensemble | [Methods |
ARGUMENTS:

- An ensemble object.
RETURN VALUE:
- A list of symbols that are the player IDs of the given ensemble object.
EXAMPLE:
(let ((ens (make-ensemble
’ens

>((f1t ((flute piccolo) :midi-channel 1))
(clr ((b-flat-clarinet)))

16 SC/NAMED-OBJECT

(tpt ((b-flat-trumpet c-trumpet) :midi-channel 2))
(vin ((violin))))
:instrument-palette
+slippery-chicken-standard-instrument-palette+)))
(get-players ens))

=> (FLT CLR TPT VLN)

SYNOPSIS:

(defmethod get-players ((e ensemble))

16.2.202 ensemble/make-ensemble

[ensemble | [Functions |

ARGUMENTS:

- An ID consisting of a symbol, string or number.
- A list of 2-element sublists that define the ensemble. See the above
comment on adding a keyword argument for doubling players.

OPTIONAL ARGUMENTS:

keyword arguments:

- :instrument-palette. An instrument palette object. This is a required
argument.

- :bar-line-writers. Obsolete as no longer used.

RETURN VALUE:
An ensemble object.

EXAMPLE:

(let ((ens (make-ensemble
’ens
>((f1lt ((flute piccolo) :midi-channel 1))
(clr ((b-flat-clarinet))))
:instrument-palette
+slippery-chicken-standard-instrument-palette+)))
(print ens))

364

16 SC/NAMED-OBJECT 365

ENSEMBLE: bar-line-writers: NIL
players: (FLT CLR)
(id instrument-palette): SLIPPERY-CHICKEN-STANDARD-INSTRUMENT-PALETTE
RECURSIVE-ASSOC-LIST: recurse-simple-data: T
num-data: 2
linked: T
full-ref: NIL
ASSOC-LIST: warn-not-found T
CIRCULAR-SCLIST: current O
SCLIST: sclist-length: 2, bounds-alert: T, copy: T
LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL
NAMED-OBJECT: id: ENS, tag: NIL,
data: (
PLAYER: (id instrument-palette): SLIPPERY-CHICKEN-STANDARD-INSTRUMENT-PALETTE
doubles: T, cmn-staff-args: NIL
LINKED-NAMED-OBJECT: previous: NIL, this: (FLT), next: (CLR)
NAMED-OBJECT: id: FLT, tag: NIL,
data:
[...]
data: (
INSTRUMENT: lowest-written:
[...]
NAMED-OBJECT: id: FLUTE, tag: NIL,
[...]
INSTRUMENT: lowest-written:
[...]
NAMED-OBJECT: id: PICCOLO, tag: NIL,
[...]
PLAYER: (id instrument-palette): SLIPPERY-CHICKEN-STANDARD-INSTRUMENT-PALETTE
doubles: NIL, cmn-staff-args: NIL
LINKED-NAMED-OBJECT: previous: (FLT), this: (CLR), next: NIL
NAMED-OBJECT: id: CLR, tag: NIL,
data:
INSTRUMENT: lowest-written:
[...]
NAMED-0BJECT: id: B-FLAT-CLARINET, tag: NIL,
)

SYNOPSIS:

(defun make-ensemble (id ensemble &key bar-line-writers instrument-palette)

16.2.203 ensemble/num-notes

[ensemble | [Methods |

16 SC/NAMED-OBJECT 366

ARGUMENTS:
- An ensemble object.
RETURN VALUE:

An integer that is the total number of attacked notes in the given
slippery-chicken object.

EXAMPLE:

(let ((mini
(make-slippery-chicken
’+mini+
:ensemble ’(((vn (violin :midi-channel 1))
(vc (cello :midi-channel 2))))
:set-palette ’((1 ((£3 g3 a3 b3 c4 d4 e4 £4))))
tset-map ’((1 (1 111 1)))
:rthm-seqg-palette ’((1 ((((2 4) e e e e))
:pitch-seq-palette ((1 2 3 4)))))
:rthm-seq-map ’((1 ((vn (1 1 1 1 1))
(ve (1111 1))

(num-notes (ensemble mini)))
=> 40
SYNOPSIS:

(defmethod num-notes ((e ensemble))

16.2.204 ensemble/num-players

[ensemble | [Methods |
ARGUMENTS:

- An ensemble object.
RETURN VALUE:

- An integer.

EXAMPLE:

16 SC/NAMED-OBJECT

(let ((ens (make-ensemble

’ens

> ((£f1t ((flute piccolo) :midi-channel 1))
(clr ((b-flat-clarinet)))
(tpt ((b-flat-trumpet c-trumpet) :midi-channel 2))
(vln ((violin))))

:instrument-palette

+slippery-chicken-standard-instrument-palette+)))

(num-players ens))

=> 4
SYNOPSIS:

(defmethod num-players ((e ensemble))

16.2.205 ensemble/players-exist

[ensemble | [Methods |
ARGUMENTS:

- An ensemble object.
- A list of symbols that are the IDs of the players sought.

RETURN VALUE:

NIL if the specified player ID is present within the given ensemble object,

otherwise drops into the debugger with an error.

EXAMPLE:

;55 Returns NIL if a player with the specified ID is found in the given

;55 ensemble object.
(let ((ens (make-ensemble
’ens
>((f1t ((flute piccolo) :midi-channel 1))
(clr ((b-flat-clarinet)))
(tpt ((b-flat-trumpet c-trumpet) :midi-channel 2))
(vln ((violin))))
:instrument-palette
+slippery-chicken-standard-instrument-palette+)))
(players-exist ens ’(vln)))

=> NIL

367

16 SC/NAMED-OBJECT 368

;; Drops into the debugger with an error if no player with the specified ID is
;; found in the given ensemble object.
(let ((ens (make-ensemble
’ens
>((f1t ((flute piccolo) :midi-channel 1))
(clr ((b-flat-clarinet)))
(tpt ((b-flat-trumpet c-trumpet) :midi-channel 2))
(vln ((violin))))
:instrument-palette
+slippery-chicken-standard-instrument-palette+)))
(players-exist ens ’(vla)))

=>

ensemble: :players—-exist: VLA is not a member of the ensemble
[Condition of type SIMPLE-ERROR]

SYNOPSIS:

(defmethod players-exist ((e ensemble) players)

16.2.206 ensemble/tessitura

[ensemble | [Methods |
ARGUMENTS:

- An ensemble object.
RETURN VALUE:

An integer that is the average pitch of the given slippery-chicken object
in degrees.

EXAMPLE:

;53 Change the tuning to chromatic first to get an accurate result:
(in-scale :chromatic)

=> #<tuning "chromatic-scale">

(let ((mini
(make-slippery-chicken
’+mini+
:ensemble ’(((vn (violin :midi-channel 1))

16 SC/NAMED-OBJECT 369

(ve (cello :midi-channel 2))))
:set-palette ’((1 ((£3 g3 a3 b3 c4 d4 e4 £4))))
:set-map *((1 (1 111 1)))
:rthm-seq-palette *((1 ((((2 4) e e e e))
:pitch-seq-palette ((1 2 3 4)))))
:rthm-seq-map ’((1 ((vn (1 1 1 1 1))
(ve (1 111 1)1))))))

(tessitura (ensemble mini)))
=> C4
SYNOPSIS:

(defmethod tessitura ((e ensemble))

16.2.207 recursive-assoc-list/get-all-refs

[recursive-assoc-list | [Methods |

ARGUMENTS:
- A recursive-assoc-list object.
OPTIONAL ARGUMENTS:

- T or NIL to indicate whether to return single REFS (non-nested keys) as
lists or as individual symbols. T = as list. Default = T.

RETURN VALUE:
A list.

EXAMPLE:

;5 By default all keys are returned as lists, even single (non-nested) keys
(let ((ral (make-ral ’mixed-bag
> ((jim beam)
(wild turkey)
(four ((roses red)
(violets ((blue velvet)
(red ((dragon den)
(viper nest)
(fox hole)))
(white ribbon)))))))))
(get-all-refs ral))

16 SC/NAMED-OBJECT 370

=> ((JIM) (WILD) (FOUR ROSES) (FOUR VIOLETS BLUE) (FOUR VIOLETS RED DRAGON)
(FOUR VIOLETS RED VIPER) (FOUR VIOLETS RED FOX) (FOUR VIOLETS WHITE))

;; Setting the optional argument to NIL returns non-nested keys as symbols
;; rather than lists
(let ((ral (make-ral ’mixed-bag
’((jim beam)
(wild turkey)
(four ((roses red)
(violets ((blue velvet)
(red ((dragon den)
(viper nest)
(fox hole)))
(white ribbon)))))))))
(get-all-refs ral nil))

=> (JIM WILD (FOUR ROSES) (FOUR VIOLETS BLUE) (FOUR VIOLETS RED DRAGON)
(FOUR VIOLETS RED VIPER) (FOUR VIOLETS RED FOX) (FOUR VIOLETS WHITE))

SYNOPSIS:

(defmethod get-all-refs ((ral recursive-assoc-list)
&optional
(single-ref-as-list t))

16.2.208 recursive-assoc-list/get-data

[recursive-assoc-list | [Methods |

ARGUMENTS:

- A symbol that is the key (id) of the named-object sought, or a list of
symbols that are the path to the desired named-object within the given
recursive-assoc-list.

- The recursive-assoc-list object in which it is sought.

OPTIONAL ARGUMENTS:

- T or NIL to indicate whether a warning is printed if the specified key
cannot be found within the given assoc-list. T = print. Default = T.

RETURN VALUE:

A named-object is returned if the specified key is found within the given

16 SC/NAMED-OBJECT 371

recursive-assoc-list object.

NIL is returned and a warning is printed if the specified key is not found
in the given recursive-assoc-list object. This applies, too, when a nested

key is specified without including the other keys that are the path to that
key (see example).

EXAMPLE:

;; Get a named-object from the top-level of the recursive-assoc-list object
(let ((ral (make-ral ’mixed-bag
?((jim beam)
(wild turkey)
(four ((roses red)
(violets ((blue velvet)
(red ((dragon den)
(viper nest)
(fox hole)))

(white ribbon)))))))))
(get-data ’wild ral))

=>
NAMED-OBJECT: id: WILD, tag: NIL,
data: TURKEY

;3 A list including all keys that are the path to the specified key is required
;; to get nested named-objects
(let ((ral (make-ral ’mixed-bag
’((jim beam)
(wild turkey)
(four ((roses red)
(violets ((blue velvet)
(red ((dragon den)
(viper nest)
(fox hole)))

(white ribbon)))))))))
(get-data ’(four violets white) ral))

=>
NAMED-OBJECT: id: WHITE, tag: NIL,
data: RIBBON

;5 Searching for a key that is not present in the given recursive-assoc-list
;; object returns NIL and a warning
(let ((ral (make-ral ’mixed-bag

’((jim beam)

16 SC/NAMED-OBJECT 372

(wild turkey)
(four ((roses red)
(violets ((blue velvet)
(red ((dragon den)
(viper nest)
(fox hole)))
(wvhite ribbon)))))))))
(get-data ’johnnie ral))

=> NIL

WARNING:
assoc-list::get-data: Could not find data with key JOHNNIE
in assoc-list with id MIXED-BAG

;3 Searching for a nested key without specifying the path to that key within a
;; list also returns a NIL and a warning
(let ((ral (make-ral ’mixed-bag
?((jim beam)
(wild turkey)
(four ((roses red)
(violets ((blue velvet)
(red ((dragon den)
(viper nest)
(fox hole)))
(wvhite ribbon)))))))))
(get-data ’fox ral))

=> NIL

WARNING:
assoc-list::get-data: Could not find data with key FOX
in assoc-list with id MIXED-BAG

SYNOPSIS:

(defmethod get-data :around (ids (ral recursive-assoc-list)
&optional (warn t))

16.2.209 recursive-assoc-list/get-first

[recursive-assoc-list | [Methods |

ARGUMENTS:
- A recursive-assoc-list object.

RETURN VALUE:

16 SC/NAMED-OBJECT

A named-object that is the first object in the DATA slot of the given

recursive-assoc-list object.
EXAMPLE:

(let ((ral (make-ral ’mixed-bag
?((jim beam)
(wild turkey)
(four ((roses red)
(violets ((blue velvet)
(red ((dragon den)
(viper nest)
(fox hole)))
(white ribbon)))))))))
(get-first ral))

=>
NAMED-OBJECT: id: JIM, tag: NIL,
data: BEAM

SYNOPSIS:

(defmethod get-first ((ral recursive-assoc-list))

16.2.210 recursive-assoc-list/get-first-ref

[recursive-assoc-list | [Methods |

ARGUMENTS:
- A recursive-assoc-list object.
RETURN VALUE: EXAMPLE:

;3 A simple call returns the first top-level named-object
(let ((ral (make-ral ’mixed-bag
> ((jim beam)
(wild turkey)
(four ((roses red)
(violets ((blue velvet)
(red ((dragon den)
(viper nest)
(fox hole)))
(white ribbon)))))))))
(get-first-ref ral))

373

16 SC/NAMED-OBJECT 374

=> (JIM)

;3 Return the first ref of a nested recursive-assoc-list object
(let ((ral (make-ral ’mixed-bag
?((jim beam)
(wild turkey)
(four ((roses red)
(violets ((blue velvet)
(red ((dragon den)
(viper nest)
(fox hole)))
(white ribbon)))))))))
(get-first-ref (get-data-data ’(four violets) ral)))

=> (FOUR VIOLETS BLUE)

SYNOPSIS:

(defmethod get-first-ref ((ral recursive-assoc-list))

16.2.211 recursive-assoc-list/get-last

[recursive-assoc-list | [Methods |

ARGUMENTS:

- A recursive-assoc-list object.
RETURN VALUE:

A named-object (or linked-named-object).
EXAMPLE:

;; This returns ’(white ribbon), not ’(fox hole)
(let ((ral (make-ral ’mixed-bag
?((jim beam)
(wild turkey)
(four ((roses red)
(violets ((blue velvet)
(red ((dragon den)
(viper nest)
(fox hole)))
(white ribbon)))))))))

16 SC/NAMED-OBJECT 375

(get-last ral))

=>
NAMED-OBJECT: id: WHITE, tag: NIL,
data: RIBBON

SYNOPSIS:

(defmethod get-last ((ral recursive-assoc-list))

16.2.212 recursive-assoc-list/get-last-ref

[recursive-assoc-list | [Methods |

ARGUMENTS:

- A recursive-assoc-list object.

RETURN VALUE:

Returns a list that is the last REF of the given recursive-assoc-list object.
EXAMPLE:

;5 Typical usage with nesting
(let ((ral (make-ral ’mixed-bag
?((jim beam)
(wild turkey)
(four ((roses red)
(violets ((blue velvet)
(red ((dragon den)
(viper nest)
(fox hole)))
(white ribbon)))))))))
(get-last-ref ral))

=> (FOUR VIOLETS WHITE)

;5 Returns the last-ref as a list even if the given recursive-assoc-list object
;; contains no nesting
(let ((ral (make-ral ’mixed-bag
> ((jim beam)
(wild turkey)
(four roses)))))
(get-last-ref ral))

16 SC/NAMED-OBJECT 376

=> (FOUR)
SYNOPSIS:

(defmethod get-last-ref ((ral recursive-assoc-list))

16.2.213 recursive-assoc-list/get-previous

[recursive-assoc-list | [Methods |

ARGUMENTS:

- A recursive-assoc-list object.

- A list containing one or more symbols that are either the ID of the
specified named object or the path of keys to that object within the
given recursive-assoc-list object.

OPTIONAL ARGUMENTS:

- An integer indicating how many steps back in the given
recursive-assoc-list from the specified named-object to look when
retrieving the desired ojbect (e.g. 1 = immediately previous object, 2 =
the one before that etc.)

RETURN VALUE:
A linked-named-object.
EXAMPLE:

;; Get the object immediately previous to that with the key WILD returns the
;; object with key JIM and data BEAM
(let ((ral (make-ral ’mixed-bag
> ((jim beam)
(wild turkey)
(four ((roses red)
(violets ((blue velvet)
(red ((dragon den)
(viper nest)
(fox hole)))
(wvhite ribbon)))))))))
(get-previous ral ’(wild)))

16 SC/NAMED-OBJECT 377

LINKED-NAMED-OBJECT: previous: NIL, this: (JIM), next: (WILD)
NAMED-OBJECT: id: JIM, tag: NIL,
data: BEAM

;; Attempting to get the previous object from the key FOUR, which contains a

;; nested list, returns an error unless the first key in the nested list is
;3 also included

(let ((ral (make-ral ’mixed-bag
>((jim beam)
(wild turkey)
(four ((roses red)
(violets ((blue velvet)
(red ((dragon den)
(viper nest)
(fox hole)))

(white ribbon)))))))))
(get-previous ral ’(four)))

=>

There is no applicable method for the generic function
#<STANDARD-GENERIC-FUNCTION PREVIOQUS (1)>

when called with arguments
(

NAMED-OBJECT: id: FOUR, tag: NIL,

(let ((ral (make-ral ’mixed-bag
> ((jim beam)
(wild turkey)
(four ((roses red)
(violets ((blue velvet)
(red ((dragon den)
(viper nest)
(fox hole)))

(white ribbon)))))))))
(get-previous ral ’(four roses)))

=>

LINKED-NAMED-OBJECT: previous: (JIM), this: (WILD), next: (FOUR ROSES)
NAMED-OBJECT: id: WILD, tag: NIL,
data: TURKEY

;3 The method defines the previous object linearly, not hierarchically; i.e.

;; the previous object to (white ribbon) here is (fox hole) and not (red ...)
(let ((ral (make-ral ’mixed-bag
’((jim beam)

(wild turkey)

16 SC/NAMED-OBJECT 378

(four ((roses red)
(violets ((blue velvet)
(red ((dragon den)
(viper nest)
(fox hole)))

(wvhite ribbon)))))))))
(get-previous ral ’(four violets white)))

=>

LINKED-NAMED-OBJECT: previous: (FOUR VIOLETS RED VIPER),
this: (FOUR VIOLETS RED FOX),

next: (FOUR VIOLETS WHITE)

NAMED-OBJECT: id: FOX, tag: NIL,

data: HOLE

;; Use the <how-many> argument to retrieve previous objects further back than
;; the immediate predecessor

(let ((ral (make-ral ’mixed-bag
’((jim beam)
(wild turkey)
(four ((roses red)
(violets ((blue velvet)
(red ((dragon den)
(viper nest)
(fox hole)))

(white ribbon)))))))))
(get-previous ral ’(four violets white) 4))

=>

LINKED-NAMED-OBJECT: previous: (FOUR ROSES),
this: (FOUR VIOLETS BLUE),

next: (FOUR VIOLETS RED DRAGON)
NAMED-OBJECT: id: BLUE, tag: NIL,

data: VELVET

;; Using a <how-many> value greater than the number of items in the given
;; recursive-assoc-list object returns a negative number
(let ((ral (make-ral ’mixed-bag
?((jim beam)
(wild turkey)
(four ((roses red)
(violets ((blue velvet)
(red ((dragon den)
(viper nest)
(fox hole)))
(white ribbon)))))))))

16 SC/NAMED-OBJECT 379

(get-previous ral ’(four violets white) 14))
=> -7
SYNOPSIS:

(defmethod get-previous ((ral recursive-assoc-list) keys
&optional (how-many 1))

16.2.214 recursive-assoc-list/link-named-objects

[recursive-assoc-list | [Methods |

ARGUMENTS:
- A recursive-assoc-list object.
OPTIONAL ARGUMENTS:

- <previous>
- <higher-next>

EXAMPLE:

;55 The recursive-assoc-list may not be linked on creation, evident here
;55 through the value of the LINKED slot
(make-ral ’mixed-bag
> ((jim beam)
(wild turkey)
(four ((roses red)
(violets ((blue velvet)
(red ((dragon den)
(viper nest)
(fox hole)))
(white ribbon)))))))

=>
RECURSIVE-ASSOC-LIST: recurse-simple-data: T
num-data: 8
linked: NIL
full-ref: NIL
ASSOC-LIST: warn-not-found T
CIRCULAR-SCLIST: current O
SCLIST: sclist-length: 3, bounds-alert: T, copy: T
LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL

16 SC/NAMED-OBJECT 380

NAMED-OBJECT: id: MIXED-BAG, tag: NIL,
data: (

NAMED-0BJECT: id: JIM, tag: NIL,

data: BEAM

NAMED-OBJECT: id: WILD, tag: NIL,
data: TURKEY
[...]

;5 The recursive-assoc-list object and the named-objects it contains are linked
;; after applying the link-named-objects method
(let ((ral (make-ral ’mixed-bag
’((jim beam)
(wild turkey)
(four ((roses red)
(violets ((blue velvet)
(red ((dragon den)
(viper nest)
(fox hole)))
(white ribbon)))))))))
(link-named-objects ral))

=>
RECURSIVE-ASSOC-LIST: recurse-simple-data: T
num-data: 8
linked: T
full-ref: NIL
ASSOC-LIST: warn-not-found T
CIRCULAR-SCLIST: current O
SCLIST: sclist-length: 3, bounds-alert: T, copy: T
LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL
NAMED-OBJECT: id: MIXED-BAG, tag: NIL,
data: (
LINKED-NAMED-OBJECT: previous: NIL, this: (JIM), next: (WILD)
NAMED-0BJECT: id: JIM, tag: NIL,
data: BEAM

LINKED-NAMED-OBJECT: previous: (JIM), this: (WILD), next: (FOUR ROSES)
NAMED-OBJECT: id: WILD, tag: NIL,

data: TURKEY

RETURN VALUE:

the recursive-assoc-list object

SYNOPSIS:

16 SC/NAMED-OBJECT 381

(defmethod link-named-objects ((ral recursive-assoc-list)
&optional previous higher-next)

16.2.215 recursive-assoc-list/lisp-assoc-listp

[recursive-assoc-list | [Functions |

ARGUMENTS:
- A list.
OPTIONAL ARGUMENTS:

T or NIL to indicate whether to consider lists of 2-item lists in the data
position of a given key/data pair to be a list or a recursive list.
T = list. Default = T.

RETURN VALUE:
T or NIL. T = the tested list can be considered a Lisp assoc-list.
EXAMPLE:

;5 A list of 2-item lists, each of whose item are all either a symbol, number,
;; or string, can be considered a Lisp assoc-list.
(let ((lal ’((roses red) (3 "allegro") (5 flute))))

(lisp-assoc-listp lal))

=T

;3 By default, lists of 2-item lists in the DATA portion of a key/data pair
;; will be considered as a simple list, rather than a recursive list, resulting
;; in the tested list passing as T.
(let ((1al > ((1 2) (3 ((45) (6 7))) (8 9))))
(lisp-assoc-listp lal))

=>T
;; Setting the optional argument to NIL will cause the same list to fail with
(let ((lal > ((1 2) (3 ((4 B5) (6 7))) (8 9))))
(lisp-assoc-listp lal nil))
=> NIL

SYNOPSIS:

(defun lisp-assoc-listp (candidate &optional (recurse-simple-data t))

16

SC/NAMED-OBJECT 382

16.2.216 recursive-assoc-list/make-ral

[recursive-assoc-list | [Functions |

ARGUMENTS:

A symbol that is the object’s ID.
A list of nested lists, or a list.

OPTIONAL ARGUMENTS:

keyword arguments:

:recurse-simple-data. T or NIL to indicate whether to recursively
instantiate a recursive-assoc-list in place of data that appears to be a
simple assoc-list (i.e. a 2-element list). If NIL, the data of 2-element
lists whose second element is a number or a symbol will be ignored,
therefore remaining as a list. For example, this data would normally
result in a recursive call: (y ((2 23) (7 28) (18 2))). T = replace
assoc-list data with recursive-assoc-lists. Default = T.

:full-ref. Nil or a list representing the path to a nested
recursive-assoc-list object within the given recursive-assoc-list object,
starting from the top level of the given object. When NIL, the given
recursive-assoc-list object itself is the top level. Default = NIL.
:tag. A symbol that is another name, description etc. for the given
recursive-assoc-list object. The tag may be used for identification but
not for searching purposes. Default = NIL.

:warn-not-found. T or NIL to indicate whether a warning is printed when
an index which doesn’t exist is used for lookup. Default = T.

RETURN VALUE:

Returns a recursive-assoc-list object.

EXAMPLE:

EI

Create a recursive-assoc-list object with default keyword argument values

(make-ral ’mixed-bag

’((jim beam)
(wild turkey)
(four ((roses red)
(violets ((blue velvet)
(red ((dragon den)
(viper nest)
(fox hole)))
(white ribbon)))))))

16 SC/NAMED-OBJECT 383

=>
RECURSIVE-ASSOC-LIST: recurse-simple-data: T
num-data: 8
linked: NIL
full-ref: NIL
ASSOC-LIST: warn-not-found T
CIRCULAR-SCLIST: current O
SCLIST: sclist-length: 3, bounds-alert: T, copy: T
LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL
NAMED-OBJECT: id: MIXED-BAG, tag: NIL,
data: (
[...]

;; Use the class’s get-all-refs method to show that by default, simple data is
;3 recursed. The sublists in the second list in this example are processed as
;; nested lists
(let ((ral (make-ral ’ral-test
>((1 one)
(2 ((34) (566))
(3 three)))))
(get-all-refs ral))

=> ((1) (2 3) (2 5) (3))

;; Using the same data, but setting the :recurse-simple-data argument to NIL
;; wWill cause the method to process simple data as a unit rather than nested

;3 lists
(let ((ral (make-ral ’ral-test
’((1 ome)
(2 ((34) (56))
(3 three))

:recurse-simple-data nil)))
(get-all-refs ral))

= ((1) (2) (3))
SYNOPSIS:

(defun make-ral (id ral &key (recurse-simple-data t) (warn-not-found t)
(tag nil) (full-ref nil))

16.2.217 recursive-assoc-list/palette

[recursive-assoc-list | [Classes |

NAME:

16 SC/NAMED-OBJECT

palette
File:

Class Hierarchy:

Version:
Project:

Purpose:

Author:
Creation date:

$$ Last modified:

palette.lsp

named-object -> linked-named-object -> sclist ->
circular-sclist -> assoc-list -> recursive-assoc-list ->
palette

1.0.0-beta2

slippery chicken (algorithmic composition)

Implementation of the palette class which adds nothing to
its direct superclass assoc-list (as of yet) but spawns a
new base type for more specialised palettes.

Michael Edwards: m@michael-edwards.org

19th February 2001

18:06:48 Tue Feb 28 2012 GMT

SVN ID: $Id: palette.lsp 1982 2012-05-24 15:35:54Z medward2 $

16.2.218 palette/instrument-palette

[palette | [Classes |
NAME:

instrument-palette

File:

Class Hierarchy:

Version:
Project:

Purpose:

instrument-palette.lsp

named-object —-> linked-named-object —-> sclist ->
circular-sclist -> assoc-list -> recursive-assoc-list ->
palette -> instrument-palette

1.0.0-beta2

slippery chicken (algorithmic composition)
Implementation of the instrument-palette class which

intantiates instruments to be used in an ensemble
instance.

384

16 SC/NAMED-OBJECT 385

Author: Michael Edwards: m@michael-edwards.org
Creation date: 6th September 2001
$$ Last modified: 19:10:45 Mon Feb 20 2012 GMT

SVN ID: $Id: instrument-palette.lsp 1982 2012-05-24 15:35:54Z medward2 $

16.2.219 instrument-palette/make-instrument-palette

[instrument-palette | [Functions |

ARGUMENTS:

- A symbol that will serve as the ID for the instrument-palette object.
- A list of instrument descriptions based on the keyword arguments of
make-instrument.

OPTIONAL ARGUMENTS:

keyword arguments:
- :warn-not-found. T or NIL to indicate whether a warning is printed when
an index which doesn’t exist is used for lookup. Default = T.

RETURN VALUE:
An instrument palette.

EXAMPLE:

;; Returns an instrument-palette object
(make-instrument-palette ’inst-pal
>((piccolo (:transposition-semitones 12
:lowest-written d4 :highest-written c6))
(bf-clarinet (:transposition-semitones -2
:lowest-written e3
thighest-written c6))
(horn (:transposition f :transposition-semitones -7
:lowest-written f2 :highest-written c5))
(violin (:lowest-written g3 :highest-written c7
:chords t))
(viola (:lowest-written c3 :highest-written f6
:chords t))))

16 SC/NAMED-OBJECT

INSTRUMENT-PALETTE:
PALETTE:
RECURSIVE-ASSOC-LIST: recurse-simple-data: T
num-data: 5
linked: NIL
full-ref: NIL
ASSOC-LIST: warn-not-found T
CIRCULAR-SCLIST: current O
SCLIST: sclist-length: 5, bounds-alert: T, copy: T
LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL
NAMED-OBJECT: id: INST-PAL, tag: NIL,
data: (
[...]

SYNOPSIS:

(defun make-instrument-palette (id ip &key (warn-not-found t))

16.2.220 instrument-palette/set-prefers-high

[instrument-palette | [Methods]
DATE:

05 Feb 2011

DESCRIPTION

Set the PREFERS-NOTES slot of a specified instrument object within a given
instrument-palette object to ’HIGH. The instrument object is specified
using the ID symbol assigned to it within the instrument-palette object

definition.

NB: The optional argument is actually required, but is listed as optional
because of the attributes of the instrument class method.

ARGUMENTS:
- An instrument-palette object.
OPTIONAL ARGUMENTS:

- A symbol that is the ID of the instrument object within the
instrument-palette object definition.

RETURN VALUE:

386

16 SC/NAMED-OBJECT 387

Returns the symbol ’HIGH.
EXAMPLE:

;; Define an instrument-palette object, then set the PREFERS-NOTES slot of the
;; instrument object ’piccolo within that instrument-palette object to ’HIGH
(let ((ip (make-instrument-palette ’inst-pal
>((piccolo (:transposition-semitones 12
:lowest-written d4
:highest-written c6))
(bf-clarinet (:transposition-semitones -2
:lowest-written e3
:highest-written c6))
(horn (:transposition f
:transposition-semitones -7
:lowest-written f2
thighest-written c5))
(violin (:lowest-written g3
:highest-written c7
:chords t))
(viola (:lowest-written c3
:highest-written f6
:chords t))))))
(set-prefers-high ip ’piccolo))

=> HIGH

SYNOPSIS:

(defmethod set-prefers-high ((ip instrument-palette) &optional instrument)

16.2.221 instrument-palette/set-prefers-low

[instrument-palette | [Methods]
DATE:

05 Feb 2011

DESCRIPTION

Set the PREFERS-NOTES slot of a specified instrument object within a given
instrument-palette object to ’LOW. The instrument object is specified
using the ID symbol assigned to it within the instrument-palette object
definition.

16 SC/NAMED-OBJECT

NB: The optional argument is actually required, but is listed as optional
because of the attributes of the instrument class method.

ARGUMENTS:
- An instrument-palette object.
OPTIONAL ARGUMENTS:

- A symbol that is the ID of the instrument object within the
instrument-palette object definition.

RETURN VALUE:
Returns the symbol ’LOW.
EXAMPLE:

;; Define an instrument-palette object, then set the PREFERS-NOTES slot of the
;; instrument object ’piccolo within that instrument-palette object to ’LOW
(let ((ip (make-instrument-palette ’inst-pal
>((piccolo (:transposition-semitones 12
:lowest-written d4
thighest-written c6))
(bf-clarinet (:transposition-semitones -2
:lowest-written e3
:highest-written c6))
(horn (:transposition f
:transposition-semitones -7
:lowest-written f2
:highest-written c5))
(violin (:lowest-written g3
:highest-written c7
:chords t))
(viola (:lowest-written c3
:highest-written f6
:chords t))))))
(set-prefers-low ip ’piccolo))

=> LOW
SYNOPSIS:

(defmethod set-prefers-low ((ip instrument-palette) &optional instrument)

388

16 SC/NAMED-OBJECT 389

16.2.222 palette/pitch-seq-palette

[palette | [Classes |
NAME:

pitch-seq-palette
File: pitch-seq-palette.lsp
Class Hierarchy: named-object -> linked-named-object -> sclist ->

circular-sclist -> assoc-list -> recursive-assoc-list ->
palette -> pitch-seq-palette

Version: 1.0.0-beta2

Project: slippery chicken (algorithmic composition)
Purpose: Implementation of the pitch-seq-palette class.
Author: Michael Edwards: m@michael-edwards.org
Creation date: 19th February 2001

$$ Last modified: 15:01:36 Mon May 14 2012 BST

SVN ID: $Id: pitch-seq-palette.lsp 1982 2012-05-24 15:35:54Z medward2 $

16.2.223 pitch-seg-palette/add-inversions

[pitch-seq-palette | [Methods |
ARGUMENTS:

- A pitch-seq-palette object.
RETURN VALUE:

Always returns T.
EXAMPLE:

;; Create a pitch-seq-palette object and print the DATA of the pitch-seq

;; objects it contains; then apply the add-inversions method and print the same
;; DATA to see the changes

(let ((mpsp (make-psp ’mpsp 5 ’((2 5 3 1 4)

16 SC/NAMED-OBJECT 390

(1425 3)
(51324)
(2345 1)
(32415))))
(print (loop for ps in (data mpsp)
collect (data ps)))
(add-inversions mpsp)
(print (loop for ps in (data mpsp)
collect (data ps))))

=>
((25314) (14253) (51324) (23451) (324105))

(25314 (14253) (61324) (23451) (32415) (4135 2)
(62413 (15342 (43215) (3425 1))

SYNOPSIS:

(defmethod add-inversions ((psp pitch-seq-palette))

16.2.224 pitch-seq-palette/combine

[pitch-seq-palette | [Methods |
ARGUMENTS:

- A first pitch-seq-palette object.
- A second pitch-seq-palette object.

RETURN VALUE:
A pitch-seq-palette object.
EXAMPLE:

;;; Combine two pitch-seq-palette objects of the same length, each of whose
;35 pitch-seqs are the same length
(let ((mpspl (make-psp ’mpspl 5 ’((2 53 14) (14253) (51324))))
(mpsp2 (make-psp ’mpsp2 5 ’((2 345 1) (324 15) (3215 4)))))
(combine mpspl mpsp2))

=>

PITCH-SEQ-PALETTE: num-notes: 10, instruments: NIL
PALETTE:

RECURSIVE-ASSOC-LIST: recurse-simple-data: T

16 SC/NAMED-OBJECT 391

num-data: 3
linked: NIL
full-ref: NIL
ASSOC-LIST: warn-not-found T
CIRCULAR-SCLIST: current O
SCLIST: sclist-length: 3, bounds-alert: T, copy: T
LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL
NAMED-OBJECT: id: "MPSP1-MPSP2", tag: NIL,
data: (
PITCH-SEQ: notes: NIL
[...]
data: (253 1423451)
PITCH-SEQ: notes: NIL

[...]

data: (1 42533241 5)
[...]

PITCH-SEQ: notes: NIL

[...]

data: (613243215 4)
)

;; When combining pitch-seq-palette objects of different lengths, the method
;; cyles through the shorter of the two
(let ((mpspl (make-psp ’mpspl 5 ’((2 53 14) (14253) (51324))))
(mpsp2 (make-psp ’mpsp2 5 "((2 345 1) (32415)))))
(loop for ps in (data (combine mpspl mpsp2))
collect (data ps)))

=> ((2531423451) (1425332415) (5132423451))
;3 The two starting pitch-seq-palette objects are not required to have
;; pitch-seq objects of the same length
(let ((mpspl (make-psp ’mpspl 5 ((2 53 14) (14253) (61324))))
(mpsp2 (make-psp ’mpsp2 3 ’((2 3 4) (3 2 4)))))
(loop for ps in (data (combine mpspl mpsp2))
collect (data ps)))
=> ((25314234) (14253324) (51324234))

SYNOPSIS:

(defmethod combine ((pspl pitch-seq-palette) (psp2 pitch-seq-palette))

16 SC/NAMED-OBJECT 392

16.2.225 pitch-seq-palette/make-psp

[pitch-seq-palette | [Functions |
ARGUMENTS:

- A symbol that is to be the ID of the pitch-seq-palette to be created.

- An integer that is the number of notes there are to be in each pitch-seq
object created.

- A list of lists, each of which contained list is a list of numbers
representing the pitch curve of the intended pitch-seq object.

RETURN VALUE:
A pitch-seq-palette object.
EXAMPLE:

;; Returns a pitch-seg-palette object
(make-psp ’mpsp 5 ((2 5 3 1 4)

(1425 3)

(51324

(23451)

(324 15))
=>
PITCH-SEQ-PALETTE: num-notes: 5, instruments: NIL
PALETTE:

RECURSIVE-ASSOC-LIST: recurse-simple-data: T
num-data: 5
linked: NIL
full-ref: NIL
ASSOC-LIST: warn-not-found T
CIRCULAR-SCLIST: current O
SCLIST: sclist-length: 5, bounds-alert: T, copy: T
LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL
NAMED-OBJECT: id: MPSP, tag: NIL,
data: (
PITCH-SEQ: notes: NIL
[...]
data: (2 53 1 4)
PITCH-SEQ: notes: NIL
[...]
data: (1 4 2 5 3)
PITCH-SEQ: notes: NIL
[...]

16 SC/NAMED-OBJECT

data: (61 3 2 4)
PITCH-SEQ: notes: NIL
[...]

data: (2 345 1)
PITCH-SEQ: notes: NIL
[...]

data: (324 15)

)

;5 Interrupts with an error if any of the <pitch-seqs> lists is not of the
;; length specified by <num-notes>
(make-psp ’mpsp 5 *((1 2 11 3)

(13215)

(135678)))

=>
pitch-seq-palette::verify-and-store:

In pitch-seq MPSP-ps-3 from palette MPSP:

Each pitch sequence must have 5 notes (you have 6):
[...]

(13567 8))
[Condition of type SIMPLE-ERROR]

SYNOPSIS:

(defun make-psp (id num-notes pitch-seqgs)

16.2.226 palette/rthm-seq-palette

[palette | [Classes |
NAME:

set-palette

File: rthm-seq-palette.lsp

Class Hierarchy: mnamed-object -> linked-named-object -> sclist ->
circular-sclist -> assoc-list -> recursive-assoc-list ->
palette -> rthm-seq-palette

Version: 1.0.0-beta2

Project: slippery chicken (algorithmic composition)

393

16 SC/NAMED-OBJECT 394

Purpose: Implementation of the rthm-seq-palette class.
Author: Michael Edwards: m@michael-edwards.org
Creation date: 19th February 2001

$$ Last modified: 15:11:44 Mon May 14 2012 BST

SVN ID: $Id: rthm-seq-palette.lsp 1982 2012-05-24 15:35:54Z medward2 $

16.2.227 rthm-seqg-palette/chop

[rthm-seq-palette | [Methods]
ARGUMENTS:

- A rthm-seq-palette object.
OPTIONAL ARGUMENTS:

- <chop-points>. A list of integer pairs, each of which delineates a
segment of the beat of the given rthm-seq-bar objects within the given
rthm-seq-palette object, measured in the rhythmic unit specified by the
<unit> argument. See the documentation for rthm-seq-bar::chop for more
details.

- <unit>. The rhythmic duration that serves as the unit of measurement for
the chop points. Default = ’s.

RETURN VALUE:

A rthm-seq-palette with the same top-level structure of the first argument,
but each ID now referencing a sub-rthm-seq-palette with sequentially
numbered rthm-seqs for each of the chopped results.

EXAMPLE:

;55 Create a rthm-seq-palette object, chop it with user-defined chop-points and
;35 a <unit> value of ’e, and print-simple the results
(let* ((rsp-orig (make-rsp
’sl-rsp
(1
((((2 4) (e) e (e) &)
:pitch-seq-palette (1 8)))
(2
((((2 4) (s) ese. (s)))

16 SC/NAMED-OBJECT

:pitch-seq-palette (3 5 7)))
3
((((34) q +s e. +q))
:pitch-seq-palette (1 7))))))

(rsp-chopped (chop rsp-orig

(1 1) (12) (22))
’e)))

(print-simple rsp-chopped))

=>

rthm-seq-palette SL-RSP
rthm-seq-palette 1

rthm-seq 1

(1 8): rest 8,
rthm-seq 2

(1 4): rest E,
rthm-seq 3

(1 8): NIL E,

rthm-seq 4

(1 8): rest 8,
rthm-seq 5

(1 4): rest E,
rthm-seq 6

(1 8): NIL E,

rthm-seq 1

(1 8): rest S,
rthm-seq 2

(1 4): rest S,
rthm-seq 3

(1 8): rest S,
rthm-seq 4

(1 8): NIL E,

rthm-seq 5

(1 4): NIL E.,
rthm-seq 6

(1 8): rest 8,
rthm-seq 1

(1 8): NIL E,

rthm-seq 2

(1 4): NIL Q,

rthm-seq 3

(1 8): rest 8,
rthm-seq 4

(1 8): rest S,
rthm-seq 5

(1 4): rest S,

NIL E,

NIL E,

NIL S,

NIL E, NIL S,

NIL S,

rest S,

NIL S,

NIL E.,

395

16 SC/NAMED-OBJECT

rthm-seq 6
(1 8): rest 8,
rthm-seq 7
(1 8): rest 8,
rthm-seq 8
(1 4): rest 4,
rthm-seq 9
(1 8): rest 8,

SYNOPSIS:

(defmethod chop ((rsp rthm-seq-palette) &optional chop-points
(unit ’s)
(number-bars-first t))

16.2.228 rthm-seg-palette/cmn-display

[rthm-seq-palette | [Methods |
ARGUMENTS:

- A rthm-seq-palette object.
OPTIONAL ARGUMENTS:

keyword arguments:

- :all-output-in-one-file. T or NIL to indicate whether to write the output
to a multi-page file or to separate files for each page.

T = one multi-page file. Default = T. This is a direct CMN attribute.

- :file. The file path, including the file name, of the file to be
generated.

- :staff-separation. A number to indicate the amount of white space between
staves belong to the same system, measured as a factor of the staff
height. Default = 3. This is a direct CMN attribute.

- :line-separation. A number to indicate the amount of white space between
lines of music (systems), measured as a factor of the staff
height. Default = 5. This is a direct CMN attribute.

- :page-nums. T or NIL to indicate whether or not to print page numbers on
the pages. T = print page numbers. Default = T.

- :no-accidentals. T or NIL to indicate whether or not to supress printing
accidentals for each and every note (rather than once per bar).

T = supress printing all accidentals. Default = NIL.

- :seqgs-per-system. An integer indicating the number of rthm-seq objects to
be printed in one staff system. Default = 1.

- :size. A number to indicate the font size of the CMN output.

396

16 SC/NAMED-OBJECT 397

RETURN VALUE:

slippery-chicken prints a series of status lines in the listener, and
outputs an EPS file.

EXAMPLE:

;5 A typical example with some specified keyword values for file and size
(let ((mrsp
(make-rsp ’rsp-test
>((seql ((((2 4) q +e. s)
((s) e (s) @)

(+e. s { 3 (te) te te }))

:pitch-seq-palette ((1 2 3456 7)
(1357246)
(1426375)
(1527324))))

(seq2 ((((4 4) (e.) s { 3 te te te } +h)
({ 3 +te (te) te } e e (W))
:pitch-seq-palette (2 34 56 7 8)))
(seg3 ((((2 4) e e { 3 te te te })
((44) (e) eeess (s)sq)
:pitch-seq-palette (3456789 10123 7))))))
(cmn-display mrsp
:file "/tmp/rmsp-output.eps"
:size 10))

SYNOPSIS:

(defmethod cmn-display ((rsp rthm-seq-palette)
&key
(all-output-in-one-file t)
(file "/tmp/cmn.eps")
(staff-separation 3)
(line-separation 5)
(page-nums t)
(no-accidentals t)
(seqs-per-system 1)
(size 15))

16.2.229 rthm-seqg-palette/create-psps

[rthm-seq-palette | [Methods]
DATE:

16 SC/NAMED-OBJECT

30 Mar 2006

DESCRIPTION
Automatically create pitch-seq-palette objects for each rthm-seq object in
the given rthm-seq-palette object.

The selection function given as an optional keyword argument should be able
to generate a list of numbers (relative note levels) for a rthm-seq of any
length; it takes two arguments only: the number of notes needed and the
pitch-seq data lists (see below).

As a pitch-seq-palette usually has several options for each rthm-seq
object, it’s best when the selection-fun doesn’t always return the same
thing given the same number of notes. NB: This will silently kill the data
of any pitch-seq-palette objects already supplied for any rthm-seqs in the
palette.

Note that the default selection function will suffice in lots of cases.
However, you may just want to use different data lists with the default
function. In that case just pass these via :selection-fun-data.

ARGUMENTS:
- A rth-seq-palette object.

OPTIONAL ARGUMENTS:

keyword arguments

- :selection-fun. This is a function that will return the pitch-seq
numbers. It takes two arguments only: 1) the number of notes needed, and
2) the pitch-seq data lists. The function also needs to be able to handle
being passed NIL NIL as arguments. In this case it should reset, if needs
be; i.e. it’s just a call to init and should return nothing. Default =
#’create-psps—-default.

- :pitch-seqgs-per-rthm-seq. This is an integer that is the number of
pitch-seqs each rthm-seq should have. NB: The method will simply cylcle
through the pitch-seqs given in the selection function to create the
required number. Default = 3.

- :selection-fun-data. This contains the pitch-seq lists to be passed to
the default selection function. There can be as many pitch-seqs in these
lists as desired. The number of notes the pitch-seq will provide is the
first item of the list. They need not be in ascending order. When this
argument is passed a value of T, the selection function will reinitialize
its default data and use that.

At the moment, the default data are:

398

16 SC/NAMED-OBJECT 399

(1 ((3) (3) (1) BN
(2 ((34) (52) (25 25) (1 25)))

(3((343) (596) (124) (522 (62 3)))
(4 ((3434) (5364) (945 11) (210438
(6 ((65658) (7T7748) (1184102 (7749 9))
(6 ((455366) (383938) (9395 1086)))
(7 ((8885969) (9384754) (343534 3)))
(8((33433154) (103938374) (3582894 11)))
(9 ((364747367) (102928272 3)
(29394996 11)))
(10 ((9993993595) (898959956 6)))
(12 (1 25555555545) (2151516515 25)))
(13 ((1255555555452) (215151651525 1))
(14 (1 25555555545 21)
(2151516515251 2))
(156 ((1 2555555554521 2)
(2151516515251 286))))))

RETURN VALUE:
Always returns T.
EXAMPLE:

;; Create a rthm-seq-palette object that specifies pitch-seq-palettes for each
;3 contained rthm-seq object and print the values of the individual
;; pitch-seq-palettes. Then apply the create-psps method using its default
;; values, and print the values of the individual pitch-seq-palettes again to
;; see the change. NB You wouldn’t normally specify pitch-seq-palettes in your
;3 rthmn-seq-palette as the whole point of this method is to have them created
;3 algorithmically, but they are given here for purposes of comparison.
(let ((mrsp (make-rsp ’rsp-test
’((seql ((((2 4) q +e. s)

((g8) e (s) @

(+e. s { 3 (te) te te }))

:pitch-seq-palette (1 2 3456 7)))

(seq2 ((((3 4) (e.) s { 3 te te te } +q)
({ 3 +te (te) te } e e ()
:pitch-seq-palette (2 3456 7 8)))
(seq3 ((((2 4) e e { 3 te te te })
((58) (e) eees s))
:pitch-seq-palette (34567 8 9 10 1 2)))))))
(print
(loop for rs in (data mrsp)
collect
(loop for ps in (data (pitch-seq-palette rs))

16 SC/NAMED-OBJECT 400

collect (data ps))))
(create-psps mrsp)
(print
(loop for rs in (data mrsp)
collect
(loop for ps in (data (pitch-seq-palette rs))
collect (data ps)))))

=>
(((1234567) ((2345678)) (3456789101 2)))
(8) (
(8) (
) (

~
~
© 0
© 0
© 0
w o ;
©O ©O ©
[Nelie)Be))

)
9
3

© © ©
oW w
CR S
© ~N
® o1 ;g
[RNINENN
© W w
TR
oW w

53
53
5 5 66) (99939935985)))
;; Use the :pitch-seqs-per-rthm-seq keyword argument to specify the number of
;; pitch-seq objects to be created for each rthm-seq. This example creates 5
;3 instead of the default 3.
(let ((mrsp (make-rsp ’rsp-test
>((seql ((((2 4) q +e. s)
((s) e (s) @
(+e. s { 3 (te) te te }))))
(seq2 ((((3 4) (e.) s { 3 te te te } +q)
({ 3 +te (te) te Y e e ()N
(seq3 ((((2 4) ee { 3 te te te })
((58) (e) eees sNNN
(create-psps mrsp :pitch-seqs-per-rthm-seq 5)
(loop for rs in (data mrsp)
collect
(loop for ps in (data (pitch-seq-palette rs))
collect (data ps))))

=>

(((8885969) (9384754 (3435343) (8885969)
(938475 4)

(3435343) (8885969 (9384754) (3435343)
(888596 9))

((9993993595) (8989599566) (9993993529 5)
(8989599566) (999399359 5)))

;;; Now an example with our own selection-fun creating random pitch-segs for
;55 demo purposes only:
(let ((mrsp (make-rsp ’rsp-test
?((seql ((((2 4) q +e. s)
((s) e (8) @
(+e. s { 3 (te) te te }))))

16 SC/NAMED-OBJECT

(seq2 ((((3 4) (e.) s { 3 te te te } +q)
({ 3 +te (te) te Y e e (PN
(seq3 ((((2 4) e e { 3 te te te })
((58) (e) eees sHNNN
(create-psps
mrsp
:selection-fun #’(lambda
(num-notes data-lists)
;; NB we’re not doing anything with data-lists here
(loop repeat num-notes collect (random 10))))
(loop for rs in (data mrsp)
collect
(loop for ps in (data (pitch-seq-palette rs))
collect (data ps))))

(((6430380) (1285378 (657391T7))
(3156671) (T785524) (913087 8))
(4869660812 (1557729312) (1562537342)))
SYNOPSIS:

(defmethod create-psps ((rsp rthm-seq-palette)
&key
(selection-fun #’create-psps-default)
(selection-fun-data nil)
(pitch-seqgs-per-rthm-seq 3))

16.2.230 rthm-seg-palette/create-psps-default

[rthm-seq-palette | [Functions]
FUNCTION:

Create pitch-sequences for the create-psps method. This is the callback
function that is passed by default. If data isn’t provided for a sequence
of a certain length, a (recursive!) attempt will be made to make one up
from two sequences of lesser length.

This (and the above lists) was first used in the piece "I Kill by Proxy".
ARGUMENTS:

- An integer that is the number of notes for which a pitch-seq-palette
object is needed.

- the pitch-seq data (see documentation for create psps method). Ideally
this would only be passed the first time the function is called.

401

16 SC/NAMED-OBJECT 402

RETURN VALUE:
A list of numbers suitable for use in creating a pitch-seq object.
SYNOPSIS:

(defun create-psps-default (num-notes data-lists)

16.2.231 rthm-seqg-palette/get-multipliers

[rthm-seq-palette | [Methods]
ARGUMENTS:

- A rthm-seq object.

- A rhythm unit, either as a number of a CMN shorthand symbol (i.e. ’e)

- A symbol that is the ID of the rthm-seq-object for which the multipliers
is sought is also a required argument (though it is listed as an optional
argument for internal reasons).

OPTIONAL ARGUMENTS:

- T or NIL to indicate whether to round the results. T = round.
Default = NIL. NB: Lisp always rounds to even numbers, meaning x.5 may
sometimes round up and sometimes round down; thus (round 1.5) => 2, and
(round 2.5) => 2.

RETURN VALUE:
A list of numbers.
EXAMPLE:

;; Returns a list of numbers, by default not rounded
(let ((mrsp
(make-rsp ’rsp-test
’((seql ((((2 4) q +e. s)
((g) e (s) @

(+e. s { 3 (te) te te }))

:pitch-seq-palette ((1 2 3 456 7)
(1357246)
(142637H5)
(1527324))))

(seq2 ((((4 4) (e.) s { 3 te te te } +h)
({ 3 +te (te) te } e e (h)))

16 SC/NAMED-OBJECT 403

:pitch-seq-palette (2 3456 7 8)))
(seq3 ((((2 4) e e { 3 te te te })
((4 4) (e) eeess (s)sq))
:pitch-seq-palette (3456789 10123 7))
(get-multipliers mrsp ’e ’seql))

=> (2.0 1.0 1.5 2.0 1.1666666666666665 0.6666666666666666 0.6666666666666666)

;; Setting the option <round> argument to T returns rounded results
(let ((mrsp
(make-rsp ’rsp-test
>((seql ((((2 4) q +e. s)
((s) e (s) @

(+e. s { 3 (te) te te }))

:pitch-seq-palette ((1 2 3456 7)
(1357246)
(1426375)
(16527324))))

(seq2 ((((4 4) (e.) s { 3 te te te } +h)
({ 3 +te (te) te Y e e (h))
:pitch-seq-palette (2 3456 7 8)))
(seq3 ((((2 4) e e { 3 te te te })
((44) (e) eeess (s)sq)
:pitch-seq-palette (3456 789 10 1 2 3 7)))))))
(get-multipliers mrsp ’e ’seql t))

= (2122111)

;5 The ID argument is required, even though it’s listed as being optional. The
;3 method interrupts with an error if no ID is supplied
(let ((mrsp
(make-rsp ’rsp-test
’((seql ((((2 4) q +e. s)
((g8) e (8) @

(+e. s { 3 (te) te te }))

:pitch-seq-palette ((1 2 3456 7)
(1357246)
(142637H5)
(1527324))))

(seq2 ((((4 4) (e.) s { 3 te te te } +h)
({ 3 +te (te) te } e e (h)))
:pitch-seq-palette (2 3 456 7 8)))
(seq3 ((((2 4) e e { 3 te te te })
((44) (e) eeess (s)sq)
:pitch-seq-palette (34567 89 10 12 3 7)))))))
(get-multipliers mrsp ’e))

16 SC/NAMED-OBJECT 404

=>
rthm-seq-palette::get-multipliers: third argument (rthm-seq ID) is required.
[Condition of type SIMPLE-ERROR]

;55 Applying the method to the a multiple-bar rthm-seq object may return
;33 different results than applying the method to each of the bars contained
;55 within that rthm-seq object as individual one-bar rthm-seq objects, as the
;;; method measures the distances between attacked notes, regardless of ties
;;; and rests.
(let ((rs1 (make-rthm-seq ’(seql ((((2 4) q +e. s))
:pitch-seq-palette ((1 2))))))
(rs2 (make-rthm-seq ’(seq2 ((((2 4) (s) e (s) q))
:pitch-seg-palette ((1 2))))))
(rs3 (make-rthm-seq ’(seq3 ((((2 4) +e. s { 3 (te) te te }))
:pitch-seg-palette ((1 2 3))))))
(rs4 (make-rthm-seq ’(seq4 ((((2 4) g +e. s)
((s) e (s) Q@
(+e. s { 3 (te) te te }))
:pitch-seq-palette ((1 2 3 45 6 7)))))))
(print (get-multipliers rsl ’e))
(print (get-multipliers rs2 ’e))
(print (get-multipliers rs3 ’e))
(print (get-multipliers rs4 ’e)))

=>

(3.5 0.5)

(1.5 2.0)

(1.1666666666666665 0.6666666666666666 0.6666666666666666)

(3.5 1.0 1.5 3.5 1.1666666666666665 0.6666666666666666 0.6666666666666666)

SYNOPSIS:

(defmethod get-multipliers ((rsp rthm-seq-palette) rthm &optional id round)

16.2.232 rthm-seqg-palette/make-rsp

[rthm-seq-palette | [Functions]
ARGUMENTS:

- A symbol that is to be the ID of the rhtm-seq-palette object created.

- A list containing rhtm-seq data to be made into rthm-seqs. Each item in
this list is a list of data formatted as it would be when passed to the
make-rthm-seq function.

16 SC/NAMED-OBJECT 405

OPTIONAL ARGUMENTS:

T or NIL to indicate whether to automatically generate and store inversions
of the pitch-seq-palette passed to the rthm-seq objects in the
rthm-seq-palette object created. T = generate and store. Default = NIL.

RETURN VALUE:
A rthm-seq-palette object.
EXAMPLE:

(make-rsp ’rsp-test ’((seql ((((2 4) q +e. s)
((s) e (8) @
(+e. s { 3 (te) te te }))
:pitch-seq-palette (1 7 3 4 5 2 6)))
(seq2 ((((3 4) (e.) s { 3 te te te } +q)
({ 3 +te (te) te } e e ())
:pitch-seq-palette (31 25 17 6)))
(seq3 ((((2 4) e e { 3 te te te })
((58) (e) eees s))
:pitch-seq-palette (4 4 4 54 4 4 5 4 3)))))

=>
RTHM-SEQ-PALETTE: psp-inversions: NIL
PALETTE:
RECURSIVE-ASSOC-LIST: recurse-simple-data: T
num-data: 3
linked: T
full-ref: NIL
ASSOC-LIST: warn-not-found T
CIRCULAR-SCLIST: current O
SCLIST: sclist-length: 3, bounds-alert: T, copy: T
LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL
NAMED-OBJECT: id: RSP-TEST, tag: NIL,

data: (
RTHM-SEQ: num-bars: 3
[...]

;; Create two rthm-seq-palette objects, one with :psp-inversions set to NIL and
;; one with it set to T, and print the DATA of the pitch-seq-palettes of each
(let ((mrspl (make-rsp ’rsp-test
’((seql ((((2 4) q +e. s)
((s) e () @
(+e. s { 3 (te) te te }))

16 SC/NAMED-OBJECT 406

:pitch-seq-palette (1 7 3 4 5 2 6))))
:psp-inversions nil))
(mrsp2 (make-rsp ’rsp-test
>((seql ((((2 4) q +e. s)
((s) e () @
(+e. s { 3 (te) te te }))
:pitch-seq-palette (1 7 3 4 5 2 6))))
:psp-inversions t)))
(print
(loop for i in (data (pitch-seq-palette (first (data mrspl))))
collect (data i)))
(print
(loop for i in (data (pitch-seq-palette (first (data mrsp2))))
collect (data i))))

=>

(1 7345286))
6)

(173452 (715436 2))

SYNOPSIS:

(defun make-rsp (id data &key (psp-inversions nil))

16.2.233 rthm-seqg-palette/reset-psps

[rthm-seq-palette | [Methods]
ARGUMENTS:

- A rthm-seq-palette object.
RETURN VALUE:

Always returns T.
EXAMPLE:

;; Create a rthm-seq-palette object whose first rthm-seq has three pitch-seq

;; objects in its pitch-seq-palette. Apply the get-next method to the

;; pitch-seg-palette object of the first rthm-seq object twice, then print the
;3 data of the next pitch-seq object to show where we are. Apply the reset-psps
;; method and print the data of the next pitch-seq object to show that we’ve

;; returned to the beginning of the pitch-seq-palette.

(let ((mrsp

16 SC/NAMED-OBJECT

(make-rsp ’rsp-test
>((seql ((((2 4) q +e. s)

(loop repeat 2

((8) e (8) @

(+e. s { 3 (te) te te }))

:pitch-seq-palette ((1 2 3456 7)
(1357246)
(142637H5)
(1527324))

(seq2 ((((3 4) (e.) s { 3 te te te } +q)
({ 3 +te (te) te } e e (q))
:pitch-seq-palette (2 3456 7 8)))
(seq3 ((((2 4) e e { 3 te te te })
((58) (e) eee s s))

:pitch-seq-palette (34567 89 10 1 2)))))))

do (get-next (pitch-seq-palette (first (data mrsp)))))

(print (data (get-next (pitch-seq-palette (first (data mrsp))))))

(reset-psps mrsp)

(print (data (get-next (pitch-seq-palette (first (data mrsp)))))))

SYNOPSIS:

(defmethod reset-psps ((rsp rthm-seq-palette))

16.2.234 rthm-seqg-palette/scale

[rthm-seq-palette | [Methods |

ARGUMENTS:

- A rthm-seq-palette object.
- A real number that is the scaling factor.

OPTIONAL ARGUMENTS:

(- the three IGNORE arguments are for internal purposes only).

RETURN VALUE:

Returns a rthm-seqg-palette object.

EXAMPLE:

407

16 SC/NAMED-OBJECT 408

;; Returns a rthm-seq-palette object
(let ((mrsp
(make-rsp ’rsp-test
>((seql ((((2 4) q +e. s)
((s) e (s) @

(+e. 5 { 3 (te) te te }))

:pitch-seq-palette ((1 2 3456 7)
(1357246)
(142637H5)
(1527324))))

(seq2 ((((4 4) (e.) s { 3 te te te } +h)
({ 3 +te (te) te } e e (h)))
:pitch-seq-palette (2 34 56 7 8)))
(seq3 ((((2 4) ee { 3 te te te })
((44) (e) eeess (s)sq)
:pitch-seq-palette (34567 89 101 2 3 7)))))))
(scale mrsp 2))

=>
RTHM-SEQ-PALETTE: psp-inversions: NIL
PALETTE:
RECURSIVE-ASSOC-LIST: recurse-simple-data: T
num-data: 3
linked: T
full-ref: NIL
ASSOC-LIST: warn-not-found T
CIRCULAR-SCLIST: current O
SCLIST: sclist-length: 3, bounds-alert: T, copy: T
LINKED-NAMED-OBJECT: previous: NIL, this: NIL, next: NIL
NAMED-OBJECT: id: RSP-TEST, tag: NIL,
data: (
RTHM-SEQ: num-bars: 3

;5 Apply the method and loop through the rthm-seq objects in the
;; rthm-seq-palette object’s DATA slot, using the print-simple method to see
;; the changes

(let ((mrsp
(make-rsp ’rsp-test
*((seql ((((2 4) q +e. s)
((s) e (s) @

(+e. s { 3 (te) te te }))

:pitch-seq-palette ((1 2 3456 7)
(1357246)
(1426375)
(1527324

16 SC/NAMED-OBJECT 409

(seq2 ((((4 4) (e.) s { 3 te te te } +h)
({ 3 +te (te) te } e e (h)))
:pitch-seq-palette (2 34 56 7 8)))
(seq3 ((((2 4) e e { 3 te te te })
((44) (e) eeess (s)sq)
:pitch-seq-palette (3456789 10123 7))
(scale mrsp .5)
(print-simple mrsp))

=>

rthm-seq-palette RSP-TEST

rthm-seq SEQ1

(2 8): note E, note S., note 32,

(2 8): rest 32, note S, rest 32, note E,

(2 8): note S., note 32, rest TS, note TS, note TS,
rthm-seq SEQ2

(4 8): rest S., note 32, note TS, note TS, note TS, note Q,
(4 8): note TS, rest TS, note TS, note S, note S, rest Q,
rthm-seq SEQ3

(2 8): note S, note S, note TS, note TS, note TS,

(4 8): rest S, note S, note S, note S, note 32, note 32, rest 32, note 32, note E,

SYNOPSIS:

(defmethod scale ((rsp rthm-seq-palette) scaler
&optional ignorel ignore2 ignore3)

16.2.235 rthm-seqg-palette/set-slot

[rthm-seq-palette | [Methods]
ARGUMENTS: OPTIONAL ARGUMENTS: RETURN VALUE: EXAMPLE:
(largest-fast-leap

(get-data ’oboe +slippery-chicken-standard-instrument-palette+))

==> 999

(set-slot ’largest-fast-leap 10 ’oboe
+slippery-chicken-standard-instrument-palette+)

SYNOPSIS:

(defmethod set-slot (slot value id (ral recursive-assoc-list))

16 SC/NAMED-OBJECT 410

16.2.236 palette/set-palette

[palette | [Classes |

NAME:
set-palette
File:

Class Hierarchy:

Version:
Project:

Purpose:

set-palette.lsp

named-object -> linked-named-object -> sclist ->
circular-sclist -> assoc-list -> recursive-assoc-list ->
palette -> set-palette

1.0.0-beta2
slippery chicken (algorithmic composition)

Implementation of the set-palette class which extends the
palette class by simply instantiating the sets given in
the palette.

Note that the sets in this palette may refer to
previously defined sets in order to obviate retyping note
lists. Hence the reference to bcl-chord2 in the
bcl-chord3 set of the example below will instantiate a
set based on a transposed clone of that set previously
stored as bcl-chord2.

(make-set-palette
‘test
> ((bcl-chordl
((bf1 ef2 aqf2 c3 e3 gqf3 ggs3 cs4 d4 g4 a4 cgsbh
dqf5 gs5 bb)
:subsets
((tcl (ds2 e3 a4))
(tc2 (bfl d4 cqgs5))
(qcl (agf2 e3 a4 dqf5 b5))
(qc2 (bf1l c3 ggqs3 cs4 cgsb)))
:related-sets
((missing (bgsO eqsl f5 aqsb eqf6 fqs6
bqf6 dqs7 £s7)))))
(bcl-chord?2
((bf1l 42 fqf2 fqs2 b2 c3 £3 g3 bqf3 bgs3 fs4 gsd ad
csb gqfb)
:subsets

16 SC/NAMED-OBJECT

((tcl (d2 g3 csb))
(tc2 (eqs2 £3 bqgf3))
(qcl (eqs2 c3 £3 fs4 gqfb))
(qc2 (d2 fgs2 bqs3 gs4 ad)))
:related-sets
((missing (aqsO dgsl ds5 gqsb dqf6 eqf6 aqf6 cqs7
e7)))))
(bcl-chord3
(bcl-chord2 :transposition 13))))

Author: Michael Edwards: m@michael-edwards.org
Creation date: August 14th 2001
$$ Last modified: 14:51:09 Mon May 14 2012 BST

SVN ID: $Id: set-palette.lsp 1982 2012-05-24 15:35:54Z medward2 $

16.2.237 set-palette/cmn-display

[set-palette | [Methods |
ARGUMENTS:

- A set-palette object.
OPTIONAL ARGUMENTS:

keyword arguments:

- :file. The file path, including the file name, of the file to be
generated.

- :4stave. T or NIL to indicate whether the note-heads of the output should
be printed on 4 staves (or 2). T = 4. Default = NIL.

- :text-x-offset. Number (positive or negative) to indicate the horizontal
offset of any text in the output. A value of 0.0 results in all text
being lined up left-flush with the note-heads below it. Units here and
below are relative to CMN staff size. Default = -0.5.

- :text-y-offset. Number (positive or negative) to indicate the vertical
offset of any text in the output.

- :font-size. A number indicating the size of any text font used in the
output. This affects text only and not the music (see :size below for
changing the size of the music).

- :break-line-each-set. T or NIL to indicate whether each set-palette
object should be printed on a separate staff or consecutively on the same

411

16 SC/NAMED-OBJECT 412

staff. T = one staff per set-palette object. Default = T.

- :line-separation. A number to indicate the amount of white space between
lines of music (systems), measured as a factor of the staff
height. Default = 3. This is a direct CMN attribute.

- :staff-separation. A number to indicate the amount of white space between
staves belong to the same system, measured as a factor of the staff
height. Default = 3. This is a direct CMN attribute.

- :transposition. Nil or a number (positive or negative) to indicate the
number of semitones by which the pitches of the given set-palette object
should be transposed before generating the CMN output. Default = NIL (0).

- :size. A number to indicate the size of the music-font in the CMN
output. This affects music only, not text.

- :use-octave-signs. T or NIL. Default = NIL.

- :automatic-octave-signs. T or NIL. Default = NIL.

- :include-missing-chromatic. T or NIL to indicate whether to also print
any chromatic pitches from the complete-set that are not present in the
given set-palette object. T = print. Default = T.

- :include-missing-non-chromatic. T or NIL to indicate whether to also
print any microtonal pitches from the complete-set that are not
present in the given set-palette object. T = print. Default = T.

RETURN VALUE:

slippery chicken prints a series of status lines in the listener, and
outputs an EPS file.

EXAMPLE:

;35 A typical example with some specified keyword values for file, font-size,
;; break-line-each-set, size, include-missing-chromatic and

;3 include-missing-non-chromatic

(let ((msp (make-set-palette

’test
»((1 (1
((c3 g3 cs4 e4 fs4 a4 bf4 c5 d5 f5 gf5 afb ef6)))
(2
((c3 g3 cs4 e4 fs4 a4 bf4 c5 d5 £f5 gfb afb5 ef6)
:subsets

((tecl (d2 g3 csb))
(tc2 (egs2 £3 bqf3))
(tc3 (b2 bgs3 gqf5)))))))
(2 ((1 ((1 1) :transposition 5))
(2 ((1 2) :transposition 5))))
(3 ((1 ((1 1) :transposition -2))
(2 ((1 2) :tramsposition -2))))))))
(cmn-display msp

16 SC/NAMED-OBJECT 413

:file "/tmp/sp-output.eps"
:font-size 8

:break-line-each-set nil

:size 10

:include-missing-chromatic nil
:include-missing-non-chromatic nil))

SYNOPSIS:

(defmethod cmn-display ((sp set-palette)
&key
;5 10.3.10: display on 4 staves (treble+15 bass-15)7
(4stave nil)
(file "/tmp/cmn.eps")
(text-x-offset -0.5)
(text-y-offset nil)
(font-size 10.0)
(break-line-each-set t)
(l1ine-separation 3)
(staff-separation nil)
(transposition nil) ;; in semitones
(size 20)
(use-octave-signs nil)
(automatic-octave-signs nil)
(include-missing-chromatic t)
(include-missing-non-chromatic t))

16.2.238 set-palette/find-sets-with-pitches

[set-palette | [Methods]
ARGUMENTS:

- A set-palette object.
- A list of pitches, either as pitch objects or note-name symbols.

OPTION ARGUMENTS

- T or NIL to indicate whether to print the notes of each successful set as
they are being examined.

RETURN VALUE:
A list of complete-set objects.

EXAMPLE:

16 SC/NAMED-OBJECT

;; Find sets that contain a single pitch
(let ((msp (make-set-palette

’test

>((1 (1
((g3 c4 ed g4)))
(2

((c4 d4 ed g4)))))
(2 ((1 ((1 1) :transposition 5))
(2 ((1 2) :transposition 5))))
(3 ((1 ((1 1) :transposition -2))
(2 ((1 2) :transposition -2))))))))
(find-sets-with-pitches msp ’(c4)))

=>

(

COMPLETE-SET: complete: NIL
[...]

data: (BF3 C4 D4 F4)

[...]

COMPLETE-SET: complete: NIL
[...]

data: (C4 F4 A4 Cb5)

[...]

COMPLETE-SET: complete: NIL
[...]

data: (C4 D4 E4 G4)

[...]

COMPLETE-SET: complete: NIL
[...]

data: (G3 C4 E4 G4)

)

;; Search for a set of two pitches, printing the successfully matched sets
(let ((msp (make-set-palette

’test

>((1 (1
((g3 c4 ed g4)))
(2

((c4 d4 ed g4)))))
(2 ((1 ((1 1) :transposition 5))
(2 ((1 2) :transposition 5))))
(3 ((1 ((1 1) :transposition -2))
(2 ((1 2) :transposition -2))))))))
(print (find-sets-with-pitches msp ’(c4 f4) t)))

414

16 SC/NAMED-OBJECT 415

(2 1): (C4 F4 A4 C5)
(3 2): (BF3 C4 D4 F4)

(
COMPLETE-SET: complete: NIL
[...]

data: (BF3 C4 D4 F4)
COMPLETE-SET: complete: NIL
[...]

data: (C4 F4 A4 C5)

)

SYNOPSIS:

(defmethod find-sets-with-pitches ((sp set-palette) pitches &optional print)

16.2.239 set-palette/force-micro-